Michael F Good

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1538800/publications.pdf

Version: 2024-02-01

108 papers

4,767 citations

71102 41 h-index 64 g-index

108 all docs

108 docs citations

108 times ranked 3563 citing authors

#	Article	IF	CITATIONS
1	Investigation of liposomal self-adjuvanting peptide epitopes derived from conserved blood-stage Plasmodium antigens. PLoS ONE, 2022, 17, e0264961.	2.5	O
2	Rheumatic heart disease: A review of the current status of global research activity. Autoimmunity Reviews, 2021, 20, 102740.	5.8	32
3	Preclinical safety and immunogenicity of Streptococcus pyogenes (Strep A) peptide vaccines. Scientific Reports, 2021, 11, 127.	3.3	14
4	Peptide-Protein Conjugation and Characterization to Develop Vaccines for Group A Streptococcus. Methods in Molecular Biology, 2021, 2355, 17-33.	0.9	2
5	Antibodies to neutralising epitopes synergistically block the interaction of the receptorâ€binding domain of SARSâ€CoVâ€2 to ACE 2. Clinical and Translational Immunology, 2021, 10, e1260.	3.8	13
6	Prime-Pull Immunization with a Bivalent M-Protein and Spy-CEP Peptide Vaccine Adjuvanted with CAF®01 Liposomes Induces Both Mucosal and Peripheral Protection from $\langle i \rangle covR/S \langle i \rangle$ Mutant Streptococcus pyogenes. MBio, 2021, 12, .	4.1	16
7	In Search of the Holy Grail: A Specific Diagnostic Test for Rheumatic Fever. Frontiers in Cardiovascular Medicine, 2021, 8, 674805.	2.4	5
8	Pre-clinical evaluation of a whole-parasite vaccine to control human babesiosis. Cell Host and Microbe, 2021, 29, 894-903.e5.	11.0	14
9	Combinatorial liposomal peptide vaccine induces IgA and confers protection against influenza virus and bacterial superâ€infection. Clinical and Translational Immunology, 2021, 10, e1337.	3.8	5
10	Whole parasite vaccines for the asexual blood stages of <i>Plasmodium</i> . Immunological Reviews, 2020, 293, 270-282.	6.0	11
11	M-protein based vaccine induces immunogenicity and protection from Streptococcus pyogenes when delivered on a high-density microarray patch (HD-MAP). Npj Vaccines, 2020, 5, 74.	6.0	12
12	Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Science Advances, 2020, 6, eaax2285.	10.3	85
13	Streptococcus: An organism causing diseases beyond neglect. PLoS Neglected Tropical Diseases, 2020, 14, e0008095.	3.0	8
14	A Superficial Skin Scarification Method in Mice to Mimic Streptococcus pyogenes Skin Infection in Humans. Methods in Molecular Biology, 2020, 2136, 287-301.	0.9	5
15	Antibodies to the conserved region of the M protein and a streptococcal superantigen cooperatively resolve toxic shock-like syndrome in HLA-humanized mice. Science Advances, 2019, 5, eaax3013.	10.3	13
16	Controlled human infection for vaccination against Streptococcus pyogenes (CHIVAS): Establishing a group A Streptococcus pharyngitis human infection study. Vaccine, 2019, 37, 3485-3494.	3.8	31
17	Antibodies to Cryptic Epitopes in Distant Homologues Underpin a Mechanism of Heterologous Immunity between <i>Plasmodium vivax</i> PvDBP and <i>Plasmodium falciparum</i> VAR2CSA. MBio, 2019, 10, .	4.1	20
18	Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Science Translational Medicine, $2019,11,$	12.4	102

#	Article	IF	Citations
19	Controlled Infection Immunization Using Delayed Death Drug Treatment Elicits Protective Immune Responses to Blood-Stage Malaria Parasites. Infection and Immunity, 2019, 87, .	2.2	13
20	Skin infection boosts memory B-cells specific for a cryptic vaccine epitope of group A streptococcus and broadens the immune response to enhance vaccine efficacy. Npj Vaccines, 2018, 3, 15.	6.0	14
21	Interpreting challenge data from early phase malaria blood stage vaccine trials. Expert Review of Vaccines, 2018, 17, 189-196.	4.4	11
22	Cellular interactions of covR/S mutant group A Streptococci. Microbes and Infection, 2018, 20, 531-535.	1.9	5
23	Induction of immunity following vaccination with a chemically attenuated malaria vaccine correlates with persistent antigenic stimulation. Clinical and Translational Immunology, 2018, 7, e1015.	3.8	5
24	Vaccination with chemically attenuated Plasmodium falciparum asexual blood-stage parasites induces parasite-specific cellular immune responses in malaria-naĀ ve volunteers: a pilot study. BMC Medicine, 2018, 16, 184.	5.5	29
25	Evaluation of safety and immunogenicity of a group A streptococcus vaccine candidate (MJ8VAX) in a randomized clinical trial. PLoS ONE, 2018, 13, e0198658.	2.5	59
26	Contribution of cryptic epitopes in designing a group A streptococcal vaccine. Human Vaccines and Immunotherapeutics, 2018, 14, 2034-2052.	3.3	14
27	Synthesis, Characterization and Immunological Evaluation of Selfâ€Adjuvanting Groupâ€A Streptococcal Vaccine Candidates Bearing Various Lipidic Adjuvanting Moieties. ChemBioChem, 2017, 18, 545-553.	2.6	10
28	Enhancing Vaccine Efficacy by Engineering a Complex Synthetic Peptide To Become a Super Immunogen. Journal of Immunology, 2017, 199, 2794-2802.	0.8	15
29	Physicochemical characterisation, immunogenicity and protective efficacy of a lead streptococcal vaccine: progress towards Phase I trial. Scientific Reports, 2017, 7, 13786.	3.3	23
30	Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. MBio, 2016, 7, .	4.1	51
31	Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite. Infection and Immunity, 2016, 84, 2689-2696.	2.2	14
32	The Impact of Established Immunoregulatory Networks on Vaccine Efficacy and the Development of Immunity to Malaria. Journal of Immunology, 2016, 197, 4518-4526.	0.8	23
33	Novel platform technology for modular mucosal vaccine that protects against streptococcus. Scientific Reports, 2016, 6, 39274.	3.3	26
34	Examining cellular immune responses to inform development of a blood-stage malaria vaccine. Parasitology, 2016, 143, 208-223.	1.5	19
35	Status of research and development of vaccines for Streptococcus pyogenes. Vaccine, 2016, 34, 2953-2958.	3.8	113
36	Linear and branched polyacrylates as a delivery platform for peptide-based vaccines. Therapeutic Delivery, 2016, 7, 601-609.	2.2	21

#	Article	IF	CITATIONS
37	Chemically Attenuated Blood-Stage Plasmodium yoelii Parasites Induce Long-Lived and Strain-Transcending Protection. Infection and Immunity, 2016, 84, 2274-2288.	2.2	31
38	A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria. Acta Biomaterialia, 2016, 44, 295-303.	8.3	24
39	Preclinical immunogenicity and safety of a Group A streptococcal M protein-based vaccine candidate. Human Vaccines and Immunotherapeutics, 2016, 12, 3089-3096.	3.3	14
40	Persistence and immunogenicity of chemically attenuated blood stage Plasmodium falciparum in Aotus monkeys. International Journal for Parasitology, 2016, 46, 581-591.	3.1	10
41	Combinatorial Synthetic Peptide Vaccine Strategy Protects against Hypervirulent CovR/S Mutant Streptococci. Journal of Immunology, 2016, 196, 3364-3374.	0.8	38
42	Cryptic epitope for antibodies should not be forgotten in vaccine design. Expert Review of Vaccines, 2016, 15, 675-676.	4.4	7
43	Streptococcal Immunity Is Constrained by Lack of Immunological Memory following a Single Episode of Pyoderma. PLoS Pathogens, 2016, 12, e1006122.	4.7	26
44	Development of cultured Plasmodium falciparum blood-stage malaria cell banks for early phase in vivo clinical trial assessment of anti-malaria drugs and vaccines. Malaria Journal, 2015, 14, 143.	2.3	38
45	A Synthetic M Protein Peptide Synergizes with a CXC Chemokine Protease To Induce Vaccine-Mediated Protection against Virulent Streptococcal Pyoderma and Bacteremia. Journal of Immunology, 2015, 194, 5915-5925.	0.8	50
46	Strategic development of the conserved region of the M protein and other candidates as vaccines to prevent infection with group A streptococci. Expert Review of Vaccines, 2015, 14, 1459-1470.	4.4	34
47	Polyacrylate-Based Delivery System for Self-adjuvanting Anticancer Peptide Vaccine. Journal of Medicinal Chemistry, 2015, 58, 888-896.	6.4	56
48	Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity. Nanomedicine, 2014, 9, 2613-2624.	3.3	38
49	Self-adjuvanting vaccine against group A streptococcus: Application of fibrillized peptide and immunostimulatory lipid as adjuvant. Bioorganic and Medicinal Chemistry, 2014, 22, 6401-6408.	3.0	41
50	Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccine, 2013, 31, 1950-1955.	3.8	37
51	PD-1 Dependent Exhaustion of CD8+ T Cells Drives Chronic Malaria. Cell Reports, 2013, 5, 1204-1213.	6.4	147
52	Long-Term Antibody Memory Induced by Synthetic Peptide Vaccination Is Protective against <i>Streptococcus pyogenes</i> Infection and Is Independent of Memory T Cell Help. Journal of Immunology, 2013, 190, 2692-2701.	0.8	41
53	Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria. Journal of Experimental Medicine, 2013, 210, 1635-1646.	8.5	94
54	Immunogenicity in mice and non-human primates of the Group A Streptococcal J8 peptide vaccine candidate conjugated to CRM197. Human Vaccines and Immunotherapeutics, 2013, 9, 488-496.	3.3	18

#	Article	IF	CITATIONS
55	Strategies in the development of vaccines to prevent infections with group A streptococcus. Human Vaccines and Immunotherapeutics, 2013, 9, 2393-2397.	3.3	22
56	Cross-species malaria immunity induced by chemically attenuated parasites. Journal of Clinical Investigation, 2013, 123, 3353-3362.	8.2	75
57	Vaccination Against Rheumatic Heart Disease: A Review of Current Research Strategies and Challenges. Current Infectious Disease Reports, 2012, 14, 381-390.	3.0	16
58	Rodent blood-stage <i>Plasmodium</i> survive in dendritic cells that infect naive mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11205-11210.	7.1	51
59	Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 168-173.	3.3	73
60	Polyacrylate Dendrimer Nanoparticles: A Selfâ€Adjuvanting Vaccine Delivery System. Angewandte Chemie - International Edition, 2010, 49, 5742-5745.	13.8	149
61	Correlation between Bioluminescence and Bacterial Burden in Passively Protected Mice Challenged with a Recombinant Bioluminescent M49 Group A Streptococcus Strain. Vaccine Journal, 2010, 17, 127-133.	3.1	6
62	Whole parasite blood stage malaria vaccines: A convergence of evidence. Hum Vaccin, 2010, 6, 114-123.	2.4	46
63	Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice. Journal of Clinical Investigation, 2010, 120, 2967-2978.	8.2	70
64	Mechanism of Protection Induced by Group A Streptococcus Vaccine Candidate J8-DT: Contribution of B and T-Cells Towards Protection. PLoS ONE, 2009, 4, e5147.	2.5	42
65	<i>emm</i> and C-Repeat Region Molecular Typing of Beta-Hemolytic Streptococci in a Tropical Country: Implications for Vaccine Development. Journal of Clinical Microbiology, 2009, 47, 2502-2509.	3.9	52
66	Comparative in silico analysis of two vaccine candidates for group A streptococcus predicts that they both may have similar safety profiles. Vaccine, 2007, 25, 3567-3573.	3.8	22
67	Malaria's journey through the lymph node. Nature Medicine, 2007, 13, 1023-1024.	30.7	7
68	Intranasal Vaccination with a Lipopeptide Containing a Conformationally Constrained Conserved Minimal Peptide, a Universal T Cell Epitope, and a Selfâ€Adjuvanting Lipid Protects Mice from Group A Streptococcus Challenge and Reduces Throat Colonization. Journal of Infectious Diseases, 2006, 194, 325-330.	4.0	72
69	Synthesis and Immunological Evaluation of M Protein Targeted Tetra-Valent and Tri-Valent Group A Streptococcal Vaccine Candidates Based on the Lipid-Core Peptide System. International Journal of Peptide Research and Therapeutics, 2006, 12, 317-326.	1.9	9
70	Intranasal Administration Is an Effective Mucosal Vaccine Delivery Route for Selfâ€Adjuvanting Lipid Core Peptides Targeting the Group A Streptococcal M Protein. Journal of Infectious Diseases, 2006, 194, 316-324.	4.0	48
71	Immunization with a Tetraepitopic Lipid Core Peptide Vaccine Construct Induces Broadly Protective Immune Responses against Group A Streptococcus. Journal of Infectious Diseases, 2006, 193, 1666-1676.	4.0	38
72	Toward the Development of an Antidisease, Transmissionâ€Blocking Intranasal Vaccine for Group A Streptococcus. Journal of Infectious Diseases, 2005, 192, 1450-1455.	4.0	51

#	Article	IF	Citations
73	Heterologous Immunity in the Absence of Variant-Specific Antibodies after Exposure to Subpatent Infection with Blood-Stage Malaria. Infection and Immunity, 2005, 73, 2478-2485.	2.2	78
74	Genetically modified Plasmodium highlights the potential of whole parasite vaccine strategies. Trends in Immunology, 2005, 26, 295-297.	6.8	24
75	M protein conserved region antibodies opsonise multiple strains of Streptococcus pyogenes with sequence variations in C-repeats. Research in Microbiology, 2005, 156, 575-582.	2.1	35
76	The immunological challenge to developing a vaccine to the blood stages of malaria parasites. Immunological Reviews, 2004, 201, 254-267.	6.0	49
77	Group A streptococcal vaccine delivery by immunization with a self-adjuvanting M protein-based lipid core peptide construct. Indian Journal of Medical Research, 2004, 119 Suppl, 88-94.	1.0	4
78	Development of lipid-core-peptide (LCP) based vaccines for the prevention of group A streptococcal (GAS) infection. International Journal of Peptide Research and Therapeutics, 2003, 10, 605-613.	0.1	9
79	Development of lipid-core-peptide (LCP) based vaccines for the prevention of group A streptococcal (GAS) infection. International Journal of Peptide Research and Therapeutics, 2003, 10, 605-613.	1.9	1
80	Induction of autoimmune valvulitis in Lewis rats following immunization with peptides from the conserved region of group A streptococcal M protein. Journal of Autoimmunity, 2003, 20, 211-217.	6.5	49
81	Protection against Group A Streptococcus by Immunization with J8–Diphtheria Toxoid: Contribution of J8―and Diphtheria Toxoid–Specific Antibodies to Protection. Journal of Infectious Diseases, 2003, 187, 1598-1608.	4.0	176
82	Potential of Lipid Core Peptide Technology as a Novel Self-Adjuvanting Vaccine Delivery System for Multiple Different Synthetic Peptide Immunogens. Infection and Immunity, 2003, 71, 2373-2383.	2.2	68
83	The purine salvage enzyme hypoxanthine guanine xanthine phosphoribosyl transferase is a major target antigen for cell-mediated immunity to malaria. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2628-2633.	7.1	50
84	The Mechanism and Significance of Deletion of Parasite-specific CD4+T Cells in Malaria Infection. Journal of Experimental Medicine, 2002, 195, 881-892.	8.5	139
85	A Lipid Core Peptide Construct Containing a Conserved Region Determinant of the Group A Streptococcal M Protein Elicits Heterologous Opsonic Antibodies. Infection and Immunity, 2002, 70, 2734-2738.	2.2	64
86	Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet, The, 2002, 360, 610-617.	13.7	376
87	Protection of mice from group A streptococcal infection by intranasal immunisation with a peptide vaccine that contains a conserved M protein B cell epitope and lacks a T cell autoepitope. Vaccine, 2002, 20, 2816-2825.	3.8	52
88	Adapting immunity with subunit vaccines: case studies with group A Streptococcus and malaria. International Journal for Parasitology, 2002, 32, 575-580.	3.1	9
89	New multi-determinant strategy for a group A streptococcal vaccine designed for the Australian Aboriginal population. Nature Medicine, 2000, 6, 455-459.	30.7	147
90	Malaria parasite-specific Th1-like T cells simultaneously reduce parasitemia and promote disease. Parasite Immunology, 1999, 21, 319-329.	1.5	59

#	Article	IF	Citations
91	Tying the conductor's arms. Nature, 1999, 400, 25-26.	27.8	4
92	Vaccine-induced cytotoxic T lymphocytes protect against retroviral challenge. Nature Medicine, 1998, 4, 1193-1196.	30.7	47
93	Intranasal immunization with yeastâ \in expressed 19â \in fkD carboxylâ \in terminal fragment ofPlasmodium yoeliimerozoite surface proteinâ \in I (yMSP119) induces protective immunity to blood stage malaria infection in mice. Parasite Immunology, 1998, 20, 413-420.	1.5	40
94	PATHWAYS AND STRATEGIES FOR DEVELOPING A MALARIA BLOOD-STAGE VACCINE. Annual Review of Immunology, 1998, 16, 57-87.	21.8	144
95	Mapping of conformational B cell epitopes within alpha-helical coiled coil proteins. Molecular Immunology, 1997, 34, 433-440.	2.2	20
96	Human antibodies to the conserved region of the M protein: opsonization of heterologous strains of group A streptococci. Vaccine, 1997, 15, 1805-1812.	3.8	59
97	A case report: Immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma cells for immunotherapy. Cancer Immunology, Immunotherapy, 1997, 44, 10-20.	4.2	101
98	Prolonged Th1â€ike response generated by a Plasmodium yoeli â€specific T cell clone allows complete clearance of infection in reconstituted mice. Parasite Immunology, 1997, 19, 111-126.	1.5	83
99	Development of immunity to malaria may not be an entirely active process. Parasite Immunology, 1995, 17, 55-59.	1.5	22
100	Identification of T cell autoepitopes that cross-react with the C-terminal segment of the M protein of group A streptococci. International Immunology, 1994, 6, 1235-1244.	4.0	106
101	Natural amino acid polymorphisms of the circumsporozoite protein ofPlasmodium falciparum abrogate specific human CD4+ T cell responsiveness. European Journal of Immunology, 1994, 24, 1418-1425.	2.9	33
102	Inhibition of Plasmodium falciparum growth in vitro by CD4+and CD8+T cells from non-exposed donors. Parasite Immunology, 1994, 16, 579-586.	1.5	49
103	â€~Original antigenic sin', T cell memory, and malaria sporozoite immunity: an hypothesis for immune evasion. Parasite Immunology, 1993, 15, 187-193.	1.5	54
104	â€~Natural' T cells responsive to malaria: evidence implicating immunological cross-reactivity in the maintenance of TCRαβ+ malaria-specific responses from non-exposed donors. International Immunology, 1992, 4, 985-994.	4.0	85
105	The importance of T cell homing and the spleen in reaching a balance between malaria immunity and immunopathology: The moulding of immunity by early exposure to crossâ€reactive organisms. Immunology and Cell Biology, 1992, 70, 405-410.	2.3	14
106	High frequency of malaria-specific T cells in non-exposed humans. European Journal of Immunology, 1992, 22, 689-696.	2.9	55
107	Clonal analysis of the effect of iron on human cytotoxic and proliferating T lymphocytes. Immunology and Cell Biology, 1990, 68, 317-324.	2.3	16
108	SENSITIVITY AND RESISTANCE OF HUMAN MELANOMA CELLS TO ULTRAVIOLET RADIATION. The Australian Journal of Experimental Biology and Medical Science, 1981, 59, 515-520.	0.7	0