
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1537869/publications.pdf Version: 2024-02-01

FELLY HEDZOC

#	Article	IF	CITATIONS
1	Contrasting changes in soil carbon under first rotation, secondary and historic woodland in England and Wales. Forest Ecology and Management, 2022, 505, 119832.	3.2	1
2	Identifying Sustainable Nitrogen Management Practices for Tea Plantations. Nitrogen, 2022, 3, 43-57.	1.3	8
3	An approach for comparing agricultural development to societal visions. Agronomy for Sustainable Development, 2022, 42, 5.	5.3	7
4	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
5	Spatial modelling approach and accounting method affects soil carbon estimates and derived farm-scale carbon payments. Science of the Total Environment, 2022, 827, 154164.	8.0	4
6	Ecological–Economic Modelling of Traditional Agroforestry to Promote Farmland Biodiversity with Cost-Effective Payments. Sustainability, 2022, 14, 5615.	3.2	6
7	UK food and nutrition security during and after the COVIDâ€19 pandemic. Nutrition Bulletin, 2021, 46, 88-97.	1.8	12
8	Modelling the Interactions of Soils, Climate, and Management for Grass Production in England and Wales. Agronomy, 2021, 11, 677.	3.0	4
9	Medium-term effect of fertilizer, compost, and dolomite on cocoa soil and productivity in Sulawesi, Indonesia. Experimental Agriculture, 2021, 57, 185-202.	0.9	2
10	Mixtures of forest and agroforestry alleviate trade-offs between ecosystem services in European rural landscapes. Ecosystem Services, 2021, 50, 101318.	5.4	19
11	Agroforestry can enhance foraging and nesting resources for pollinators with focus on solitary bees at the landscape scale. Agroforestry Systems, 2020, 94, 379-387.	2.0	19
12	Effects of conservation tillage drills on soil quality indicators in a wheat–oilseed rape rotation: organic carbon, earthworms and waterâ€stable aggregates. Soil Use and Management, 2020, 36, 139-152.	4.9	10
13	Conceptualizing pathways to sustainable agricultural intensification. Advances in Ecological Research, 2020, 63, 161-192.	2.7	16
14	Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. Agronomy, 2020, 10, 928.	3.0	40
15	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	6.4	319
16	Quantifying Regulating Ecosystem Services with Increased Tree Densities on European Farmland. Sustainability, 2020, 12, 6676.	3.2	6
17	Deriving Wheat Crop Productivity Indicators Using Sentinel-1 Time Series. Remote Sensing, 2020, 12, 2385.	4.0	10
18	Insights into aphid prey consumption by ladybirds: Optimising field sampling methods and primer design for high throughput sequencing. PLoS ONE, 2020, 15, e0235054.	2.5	7

#	Article	IF	CITATIONS
19	Whole system valuation of arable, agroforestry and tree-only systems at three case study sites in Europe. Journal of Cleaner Production, 2020, 269, 122283.	9.3	13
20	Dry deposition of air pollutants on trees at regional scale: A case study in the Basque Country. Agricultural and Forest Meteorology, 2019, 278, 107648.	4.8	20
21	Seasonal shifts and complementary use of pollen sources by two bees, a lacewing and a ladybeetle species in European agricultural landscapes. Journal of Applied Ecology, 2019, 56, 2431-2442.	4.0	65
22	Agroforestry is paying off – Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosystem Services, 2019, 36, 100896.	5.4	84
23	Economic valuation of ecosystem goods and services: a review for decision makers. Journal of Environmental Economics and Policy, 2019, 8, 359-378.	2.5	42
24	Effects of conservation tillage systems on soil physical changes and crop yields in a wheat–oilseed rape rotation. Journal of Soils and Water Conservation, 2019, 74, 247-258.	1.6	17
25	Cross-site analysis of perceived ecosystem service benefits in multifunctional landscapes. Global Environmental Change, 2019, 56, 134-147.	7.8	79
26	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
27	Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy, 2019, 83, 581-593.	5.6	121
28	Colour, water and chlorophyll loss in harvested broccoli (Brassica oleracea L. Italica) under ambient conditions in Pakistan. Scientia Horticulturae, 2019, 246, 858-861.	3.6	4
29	What is the future for agroforestry in Italy?. Agroforestry Systems, 2019, 93, 2243-2256.	2.0	36
30	Understanding agroforestry practices in Europe through landscape features policy promotion. Agroforestry Systems, 2018, 92, 1105-1115.	2.0	16
31	Forage-SAFE: a model for assessing the impact of tree cover on wood pasture profitability. Ecological Modelling, 2018, 372, 24-32.	2.5	16
32	Agroforestry for high value tree systems in Europe. Agroforestry Systems, 2018, 92, 945-959.	2.0	49
33	Driving forces for agroforestry uptake in Mediterranean Europe: application of the analytic network process. Agroforestry Systems, 2018, 92, 863-876.	2.0	10
34	A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA. Journal of Cleaner Production, 2018, 172, 4010-4017.	9.3	75
35	Development of Crop.LCA, an adaptable screening life cycle assessment tool for agricultural systems: A Canadian scenario assessment. Journal of Cleaner Production, 2018, 172, 3770-3780.	9.3	26
36	Modelling and valuing the environmental impacts of arable, forestry and agroforestry systems: a case study. Agroforestry Systems, 2018, 92, 1059-1073.	2.0	33

#	Article	IF	CITATIONS
37	Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforestry Systems, 2018, 92, 1075-1089.	2.0	35
38	Farmers' reasoning behind the uptake of agroforestry practices: evidence from multiple case-studies across Europe. Agroforestry Systems, 2018, 92, 811-828.	2.0	61
39	Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services. Agroforestry Systems, 2018, 92, 877-891.	2.0	115
40	Land use change and soil carbon pools: evidence from a long-term silvopastoral experiment. Agroforestry Systems, 2018, 92, 1035-1046.	2.0	25
41	How local stakeholders perceive agroforestry systems: an Italian perspective. Agroforestry Systems, 2018, 92, 849-862.	2.0	23
42	How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders. Agroforestry Systems, 2018, 92, 829-848.	2.0	64
43	Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model. Agroforestry Systems, 2018, 92, 1047-1057.	2.0	18
44	Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. Environmental Science and Policy, 2018, 80, 44-52.	4.9	68
45	University Contributions to the Circular Economy: Professing the Hidden Curriculum. Sustainability, 2018, 10, 2719.	3.2	42
46	Advances in European agroforestry: results from the AGFORWARD project. Agroforestry Systems, 2018, 92, 801-810.	2.0	59
47	Agroforestry in the European common agricultural policy. Agroforestry Systems, 2018, 92, 1117-1127.	2.0	24
48	Landscape-scale modelling of agroforestry ecosystems services in Swiss orchards: a methodological approach. Landscape Ecology, 2018, 33, 1633-1644.	4.2	22
49	Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems and Environment, 2017, 241, 121-132.	5.3	148
50	Farmer perception of benefits, constraints and opportunities for silvoarable systems. Outlook on Agriculture, 2017, 46, 74-83.	3.4	34
51	A nexus perspective on competing land demands: Wider lessons from a UK policy case study. Environmental Science and Policy, 2016, 59, 74-84.	4.9	56
52	Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture. Geoderma, 2016, 283, 10-20.	5.1	62
53	Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems and Environment, 2016, 230, 150-161.	5.3	365
54	A systematic map of ecosystem services assessments around European agroforestry. Ecological Indicators, 2016, 62, 47-65.	6.3	114

#	Article	IF	CITATIONS
55	Variation of Oriental Oak (Quercus variabilis) Leaf δ13C across Temperate and Subtropical China: Spatial Patterns and Sensitivity to Precipitation. Forests, 2015, 6, 2296-2306.	2.1	12
56	Innovative agroecosystem goods and services: key profitability drivers in Swiss agroforestry. Agronomy for Sustainable Development, 2015, 35, 759-770.	5.3	43
57	Developing a multi-pollutant conceptual framework for the selection and targeting of interventions in water industry catchment management schemes. Journal of Environmental Management, 2015, 161, 153-162.	7.8	14
58	Predicting the impacts of bioenergy production on farmland birds. Science of the Total Environment, 2014, 476-477, 7-19.	8.0	11
59	Managing declining yields from ageing tea plantations. Journal of the Science of Food and Agriculture, 2014, 94, 1477-1481.	3.5	7
60	Gains to species diversity in organically farmed fields are not propagated at the farm level. Nature Communications, 2014, 5, 4151.	12.8	89
61	Soil organic carbon and root distribution in a temperate arable agroforestry system. Plant and Soil, 2013, 373, 43-58.	3.7	77
62	REVIEW: The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 2013, 50, 812-829.	4.0	169
63	Energyscapes: Linking the energy system and ecosystem services in real landscapes. Biomass and Bioenergy, 2013, 55, 17-26.	5.7	51
64	What Do We Need to Know to Enhance the Environmental Sustainability of Agricultural Production? A Prioritisation of Knowledge Needs for the UK Food System. Sustainability, 2013, 5, 3095-3115.	3.2	35
65	Environmental Impact Assessment, ecosystems services and the case of energy crops in England. Journal of Environmental Planning and Management, 2012, 55, 369-385.	4.5	24
66	Interactive effects of landscape context constrain the effectiveness of local agriâ€environmental management. Journal of Applied Ecology, 2012, 49, 695-705.	4.0	100
67	A framework for reviewing the trade-offs between, renewable energy, food, feed and wood production at a local level. Renewable and Sustainable Energy Reviews, 2012, 16, 129-142.	16.4	43
68	A system identification approach for developing and parameterising an agroforestry system model under constrained availability of data. Environmental Modelling and Software, 2011, 26, 1540-1553.	4.5	16
69	Farm-SAFE: the process of developing a plot- and farm-scale model of arable, forestry, and silvoarable economics. Agroforestry Systems, 2011, 81, 93-108.	2.0	31
70	Clobal pattern of leaf litter nitrogen and phosphorus in woody plants. Annals of Forest Science, 2010, 67, 811-811.	2.0	54
71	Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe. Ecological Modelling, 2010, 221, 1744-1756.	2.5	48
72	Simulation scenarios of spatio-temporal arrangement of crops at the landscape scale. Environmental Modelling and Software, 2010, 25, 1881-1889.	4.5	60

#	Article	IF	CITATIONS
73	Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. Journal of Applied Ecology, 2010, 47, 1003-1013.	4.0	109
74	Assessing Climate Change Causes, Risks and Opportunities in Forestry. Outlook on Agriculture, 2010, 39, 263-268.	3.4	8
75	Application of an ecosystem function framework to perceptions of community woodlands. Land Use Policy, 2009, 26, 551-557.	5.6	105
76	Agricultural technology and land use futures: The UK case. Land Use Policy, 2009, 26, S222-S229.	5.6	32
77	Agriculture and land use: Demand for and supply of agricultural commodities, characteristics of the farming and food industries, and implications for land use in the UK. Land Use Policy, 2009, 26, S230-S242.	5.6	75
78	Ecological cross compliance promotes farmland biodiversity in Switzerland. Frontiers in Ecology and the Environment, 2009, 7, 247-252.	4.0	98
79	A systematic representation of crop rotations. Agricultural Systems, 2008, 97, 26-33.	6.1	127
80	Water Renew systems: wastewater polishing using renewable energy crops. Water Science and Technology, 2008, 57, 1421-1428.	2.5	13
81	Methodological approach for the assessment of environmental effects of agroforestry at the landscape scale. Ecological Engineering, 2007, 29, 450-462.	3.6	55
82	Yield-SAFE: A parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecological Engineering, 2007, 29, 419-433.	3.6	115
83	Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecological Engineering, 2007, 29, 434-449.	3.6	126
84	Integrating environmental and economic performance to assess modern silvoarable agroforestry in Europe. Ecological Economics, 2007, 63, 759-767.	5.7	69
85	Modeling environmental benefits of silvoarable agroforestry in Europe. Agriculture, Ecosystems and Environment, 2007, 119, 320-334.	5.3	116
86	Compatible measurements of volumetric soil water content using a neutron probe and Diviner 2000 after field calibration. Soil Use and Management, 2006, 22, 061030030452004-???.	4.9	6
87	EVALUATION OF SIMPLE HAND-HELD MECHANICAL SYSTEMS FOR HARVESTING TEA (CAMELLIA SINENSIS). Experimental Agriculture, 2006, 42, 165-187.	0.9	8
88	Development and use of a framework for characterising computer models of silvoarable economics. Agroforestry Systems, 2005, 65, 53-65.	2.0	20
89	Poplar (Populus spp) growth and crop yields in a silvoarable experiment at three lowland sites in England. Agroforestry Systems, 2005, 63, 157-169.	2.0	53
90	A COMPARISON OF THE RESPONSES OF MATURE AND YOUNG CLONAL TEA TO DROUGHT. Experimental Agriculture, 2001, 37, 391-402.	0.9	16

#	Article	IF	CITATIONS
91	THE USE OF LEAF APPEARANCE RATES ESTIMATED FROM MEASUREMENTS OF AIR TEMPERATURE TO DETERMINE HARVEST INTERVALS FOR TEA. Experimental Agriculture, 1998, 34, 207-218.	0.9	11
92	RESPONSES OF YOUNG TEA (CAMELLIA SINENSIS) CLONES TO DROUGHT AND TEMPERATURE. 3. SHOOT EXTENSION AND DEVELOPMENT. Experimental Agriculture, 1997, 33, 367-383.	0.9	15
93	Responses of Young Tea (Camellia sinensis) Clones to Drought and Temperature. II. Dry Matter Production and Partitioning. Experimental Agriculture, 1996, 32, 377-394.	0.9	20
94	Responses of Young Tea (<i>Camellia Sinensis</i>) Clones to Drought and Temperature. I. Yield and Yield Distribution. Experimental Agriculture, 1996, 32, 357-372.	0.9	21
95	Effects of Clone and Irrigation on the Stomatal Conductance and Photosynthetic Rate of Tea (Camellia sinensis). Experimental Agriculture, 1994, 30, 1-16.	0.9	21

26 Effects of Light, Temperature, Irrigation and Fertilizer on Photosynthetic Rate in Tea (Camellia) Tj ETQq0 0 0 rgBT /Overlock 1976 50 542