Marshall Devor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1535977/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Might pain be experienced in the brainstem rather than in the cerebral cortex?. Behavioural Brain Research, 2022, 427, 113861.	2.2	4
2	Searching in the wrong place: Might consciousness reside in the brainstem?. Behavioral and Brain Sciences, 2022, 45, e46.	0.7	0
3	Anesthetic loss of consciousness induced by chemogenetic excitation of mesopontine effector neurons Experimental Neurology, 2022, 357, 114169.	4.1	1
4	A nodal point for brain-state transitions: the mesopontine tegmental anesthesia area (MPTA) in mice. Experimental Brain Research, 2021, 239, 3255-3266.	1.5	1
5	Anesthesia in mice activates discrete populations of neurons throughout the brain. Journal of Neuroscience Research, 2021, 99, 3284-3305.	2.9	5
6	Paradoxical anesthesia: Sleep-like EEG during anesthesia induced by mesopontine microinjection of GABAergic agents. Experimental Neurology, 2021, 343, 113760.	4.1	7
7	Reduced Sensitivity to Anesthetic Agents upon Lesioning the Mesopontine Tegmental Anesthesia Area in Rats Depends on Anesthetic Type. Anesthesiology, 2020, 132, 535-550.	2.5	16
8	"Shooting pain―in lumbar radiculopathy and trigeminal neuralgia, and ideas concerning its neural substrates. Pain, 2020, 161, 308-318.	4.2	9
9	Patterns of neural activity in the mouse brain: Wakefulness vs. General anesthesia. Neuroscience Letters, 2020, 735, 135212.	2.1	14
10	Individual Mesopontine Neurons Implicated in Anesthetic Loss-of-consciousness Employ Separate Ascending Pathways to the Cerebral Cortex. Neuroscience, 2020, 432, 188-204.	2.3	4
11	CACNG2 polymorphisms associate with chronic pain after mastectomy. Pain, 2019, 160, 561-568.	4.2	22
12	Enhanced wakefulness following lesions of a mesopontine locus essential for the induction of general anesthesia. Behavioural Brain Research, 2018, 341, 198-211.	2.2	13
13	Mesopontine Neurons Implicated in Anesthetic Loss-of-consciousness have Either Ascending or Descending Axonal Projections, but Not Both. Neuroscience, 2018, 369, 152-167.	2.3	6
14	Rethinking the causes of pain in herpes zoster and postherpetic neuralgia: the ectopic pacemaker hypothesis. Pain Reports, 2018, 3, e702.	2.7	46
15	sec -Butylpropylacetamide (SPD), a new amide derivative of valproic acid for the treatment of neuropathic and inflammatory pain. Pharmacological Research, 2017, 117, 129-139.	7.1	11
16	Location of the Mesopontine Neurons Responsible for Maintenance of Anesthetic Loss of Consciousness. Journal of Neuroscience, 2017, 37, 9320-9331.	3.6	49
17	Model of anaesthetic induction by unilateral intracerebral microinjection of <scp>GABA</scp> ergic agonists. European Journal of Neuroscience, 2016, 43, 846-858.	2.6	17
18	Mesopontine Switch for the Induction of General Anesthesia by Dedicated Neural Pathways. Anesthesia and Analgesia, 2016, 123, 1274-1285.	2.2	19

MARSHALL DEVOR

#	Article	IF	CITATIONS
19	Transient loss of consciousness during hypercapnia and hypoxia: Involvement of pathways associated with general anesthesia. Experimental Neurology, 2016, 284, 67-78.	4.1	9
20	Injured sensory neuron–derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nature Neuroscience, 2016, 19, 94-101.	14.8	421
21	Brainstem node for loss of consciousness due to GABAA receptor-active anesthetics. Experimental Neurology, 2016, 275, 38-45.	4.1	33
22	Does the Golem Feel Pain? Moral Instincts and Ethical Dilemmas Concerning Suffering and the Brain. Pain Practice, 2015, 15, 497-508.	1.9	8
23	The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell–derived leukocyte elastase. Nature Medicine, 2015, 21, 518-523.	30.7	182
24	The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Science Translational Medicine, 2015, 7, 287ra72.	12.4	59
25	PNS origin of phantom limb sensation and pain: Reply to Letter to the Editor regarding Foell et al., Peripheral origin of phantom limb pain: Is it all resolved?. Pain, 2014, 155, 2207-2208.	4.2	7
26	Sources of Individual Variability: Mirnas That Predispose to Neuropathic Pain Identified Using Genome-Wide Sequencing. Molecular Pain, 2014, 10, 1744-8069-10-22.	2.1	41
27	Nerve resection for the treatment of chronic neuropathic pain. Pain, 2014, 155, 1053-1054.	4.2	8
28	Dynamic genotype-selective "phenotypic switching―of CGRP expression contributes to differential neuropathic pain phenotype. Experimental Neurology, 2013, 250, 194-204.	4.1	35
29	Variability, pain genes and the pain practitioner. Pain Management, 2013, 3, 1-3.	1.5	7
30	Genotype-selective phenotypic switch in primary afferent neurons contributes to neuropathic pain. Pain, 2011, 152, 2413-2426.	4.2	61
31	Susceptibility to chronic pain following nerve injury is genetically affected by <i>CACNG2</i> . Genome Research, 2010, 20, 1180-1190.	5.5	128
32	Cerebral Activity during the Anesthesia-Like State Induced by Mesopontine Microinjection of Pentobarbital. Journal of Neuroscience, 2009, 29, 7053-7064.	3.6	42
33	Unity vs. diversity of neuropathic pain mechanisms: Allodynia and hyperalgesia in rats selected for heritable predisposition to spontaneous pain. Pain, 2009, 146, 148-157.	4.2	10
34	Ectopic discharge in Aβ afferents as a source of neuropathic pain. Experimental Brain Research, 2009, 196, 115-128.	1.5	325
35	Correlational Analysis for Identifying Genes whose Regulation Contributes to Chronic Neuropathic Pain. Molecular Pain, 2009, 5, 1744-8069-5-7.	2.1	40
36	Bulbospinal neurons of the rat rostromedial medulla are highly collateralized. Journal of Comparative Neurology, 2008, 506, 960-978.	1.6	20

MARSHALL DEVOR

#	Article	IF	CITATIONS
37	Trigeminal Neuralgia During Sleep. Pain Practice, 2008, 8, 263-268.	1.9	30
38	pain2: A neuropathic pain QTL identified on rat chromosome 2. Pain, 2008, 135, 92-97.	4.2	16
39	Nociception in Kyoto. Pain, 2008, 140, 519-520.	4.2	6
40	Pain, cortex, and consciousness. Behavioral and Brain Sciences, 2007, 30, 89-90.	0.7	6
41	Sexâ€specific variability and a â€~cage effect' independently mask a neuropathic pain quantitative trait locus detected in a whole genome scan. European Journal of Neuroscience, 2007, 26, 681-688.	2.6	29
42	Sodium Channels and Mechanisms of Neuropathic Pain. Journal of Pain, 2006, 7, S3-S12.	1.4	299
43	A putative flip–flop switch for control of REM sleep. Nature, 2006, 441, 589-594.	27.8	1,086
44	Movement suppression during anesthesia: Neural projections from the mesopontine tegmentum to areas involved in motor control. Journal of Comparative Neurology, 2005, 489, 425-448.	1.6	37
45	Pain Is Perception-Calibrating Qualia. Journal of Neuropathic Pain & Symptom Palliation, 2005, 1, 17-18.	0.1	1
46	pain1: A neuropathic pain QTL on mouse chromosome 15 in a C3H×C58 backcross. Pain, 2005, 116, 289-293.	4.2	31
47	Heritability of symptoms in the neuroma model of neuropathic pain: Replication and complementation analysis. Pain, 2005, 116, 294-301.	4.2	22
48	Mechanism of trigeminal neuralgia: an ultrastructural analysis of trigeminal root specimens obtained during microvascular decompression surgery. Journal of Neurosurgery, 2002, 96, 532-543.	1.6	227
49	Cranial root injury in glossopharyngeal neuralgia: electron microscopic observations. Journal of Neurosurgery, 2002, 96, 603-606.	1.6	15
50	Pathophysiology of Trigeminal Neuralgia: The Ignition Hypothesis. Clinical Journal of Pain, 2002, 18, 4-13.	1.9	402
51	Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain, 2001, 94, 101-112.	4.2	146
52	Dye coupling does not explain functional crosstalk within dorsal root ganglia. Journal of the Peripheral Nervous System, 2001, 6, 227-231.	3.1	9
53	Unexplained peculiarities of the dorsal root ganglion. Pain, 1999, 82, S27-S35.	4.2	216
54	Central versus peripheral substrates of persistent pain: Which contributes more?. Behavioral and Brain Sciences, 1997, 20, 446-446.	0.7	3

MARSHALL DEVOR

#	Article	IF	CITATIONS
55	Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature, 1993, 363, 543-546.	27.8	753
56	Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain, 1992, 48, 261-268.	4.2	421
57	Sensory basis of autotomy in rats. Pain, 1991, 45, 109-110.	4.2	30
58	Neurogenesis in Adult Rat Dorsal Root Ganglia: On Counting and the Count. Somatosensory & Motor Research, 1991, 8, 9-12.	0.9	36
59	Abnormal Impulse Discharge in Primary Afferent Axons Injured in the Peripheral versus the Central Nervous System. Somatosensory & Motor Research, 1988, 6, 63-77.	0.9	15
60	Proliferation of Primary Sensory Neurons in Adult Rat Dorsal Root Ganglion and the Kinetics of Retrograde Cell Loss after Sciatic Nerve Section. Somatosensory & Motor Research, 1985, 3, 139-167.	2.2	203
61	Corticosteroids suppress ectopic neural discharge originating in experimental neuromas. Pain, 1985, 22, 127-137.	4.2	294
62	Axoplasmic transport block reduces ectopic impulse generation in injured peripheral nerves. Pain, 1983, 16, 73-85.	4.2	103
63	Nerves, Pain, and Consciousness. Frontiers for Young Minds, 0, 10, .	0.8	0