
## Robert G Quivey Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1535296/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF               | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 1  | Analysis of the Streptococcus mutans Proteome during Acid and Oxidative Stress Reveals Modules of<br>Protein Coexpression and an Expanded Role for the TreR Transcriptional Regulator. MSystems, 2022, 7,<br>e0127221.                 | 3.8              | 8           |
| 2  | Prediction of early childhood caries onset and oral microbiota. Molecular Oral Microbiology, 2021, 36, 255-257.                                                                                                                        | 2.7              | 3           |
| 3  | <i>Streptococcus mutans</i> SpxA2 relays the signal of cell envelope stress from LiaR to effectors that maintain cell wall and membrane homeostasis. Molecular Oral Microbiology, 2020, 35, 118-128.                                   | 2.7              | 10          |
| 4  | Disruption of <scp> </scp> -Rhamnose Biosynthesis Results in Severe Growth Defects in<br>Streptococcus mutans. Journal of Bacteriology, 2020, 202, .                                                                                   | 2.2              | 14          |
| 5  | <i>Streptococcus mutans</i> requires mature rhamnoseâ€glucose polysaccharides for proper<br>pathophysiology, morphogenesis and cellular division. Molecular Microbiology, 2019, 112, 944-959.                                          | 2.5              | 27          |
| 6  | Inactivation of Streptococcus mutans genes lytST and dltAD impairs its pathogenicity in vivo. Journal of Oral Microbiology, 2019, 11, 1607505.                                                                                         | 2.7              | 18          |
| 7  | Characterization of the Trehalose Utilization Operon in Streptococcus mutans Reveals that the TreR<br>Transcriptional Regulator Is Involved in Stress Response Pathways and Toxin Production. Journal of<br>Bacteriology, 2018, 200, . | 2.2              | 24          |
| 8  | A Drug Repositioning Approach Reveals that Streptococcus mutans Is Susceptible to a Diverse Range of Established Antimicrobials and Nonantibiotics. Antimicrobial Agents and Chemotherapy, 2018, 62, .                                 | 3.2              | 23          |
| 9  | Vitamin D Compounds Are Bactericidal against Streptococcus mutans and Target the<br>Bacitracin-Associated Efflux System. Antimicrobial Agents and Chemotherapy, 2018, 62, .                                                            | 3.2              | 31          |
| 10 | Deficiency of BrpA in <i>Streptococcus mutans</i> reduces virulence in rat caries model. Molecular<br>Oral Microbiology, 2018, 33, 353-363.                                                                                            | 2.7              | 17          |
| 11 | Diverted Total Synthesis of Carolacton-Inspired Analogs Yields Three Distinct Phenotypes in<br><i>Streptococcus mutans</i> Biofilms. Journal of the American Chemical Society, 2017, 139, 7188-7191.                                   | 13.7             | 27          |
| 12 | Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of <i>Streptococcus mutans</i> biofilms. Biofouling, 2017, 33, 722-740.                                                          | 2.2              | 63          |
| 13 | Candida albicans Carriage in Children with Severe Early Childhood Caries (S-ECC) and Maternal Relatedness. PLoS ONE, 2016, 11, e0164242.                                                                                               | 2.5              | 84          |
| 14 | What Are We Learning and What Can We Learn from the Human Oral Microbiome Project?. Current<br>Oral Health Reports, 2016, 3, 56-63.                                                                                                    | 1.6              | 12          |
| 15 | PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans. Microbiology<br>(United Kingdom), 2016, 162, 662-671.                                                                                          | 1.8              | 5           |
| 16 | A Modified Chromogenic Assay for Determination of the Ratio of Free Intracellular NAD+/NADH in Streptococcus mutans. Bio-protocol, 2016, 6, .                                                                                          | 0.4              | 9           |
| 17 | β-Phosphoglucomutase contributes to aciduricity in Streptococcus mutans. Microbiology (United) Tj ETQq1 1 0                                                                                                                            | .784314 r<br>1.8 | gBT/Overloc |
| 18 | Streptococcus mutans: a new Gram-positive paradigm?. Microbiology (United Kingdom), 2013, 159, 436-445                                                                                                                                 | 1.8              | 174         |

ROBERT G QUIVEY JR

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Streptococcus mutans Aminotransferase Encoded by ilvE Is Regulated by CodY and CcpA. Journal of Bacteriology, 2013, 195, 3552-3562.                                                                           | 2.2 | 24        |
| 20 | The Branched-Chain Amino Acid Aminotransferase Encoded by <i>ilvE</i> Is Involved in Acid Tolerance in Streptococcus mutans. Journal of Bacteriology, 2012, 194, 2010-2019.                                       | 2.2 | 78        |
| 21 | Mutation of the NADH Oxidase Gene ( <i>nox</i> ) Reveals an Overlap of the Oxygen- and Acid-Mediated<br>Stress Responses in Streptococcus mutans. Applied and Environmental Microbiology, 2012, 78,<br>1215-1227. | 3.1 | 46        |
| 22 | Cardiolipin biosynthesis in Streptococcus mutans is regulated in response to external pH.<br>Microbiology (United Kingdom), 2012, 158, 2133-2143.                                                                 | 1.8 | 30        |
| 23 | Role of DNA base excision repair in the mutability and virulence of <i>Streptococcus mutans</i> .<br>Molecular Microbiology, 2012, 85, 361-377.                                                                   | 2.5 | 17        |
| 24 | Responses of Lactic Acid Bacteria to Acid Stress. , 2011, , 23-53.                                                                                                                                                |     | 7         |
| 25 | Two Spx Proteins Modulate Stress Tolerance, Survival, and Virulence in <i>Streptococcus mutans</i> .<br>Journal of Bacteriology, 2010, 192, 2546-2556.                                                            | 2.2 | 109       |
| 26 | Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage. Canadian Journal of Microbiology, 2010, 56, 539-547.                 | 1.7 | 45        |
| 27 | Role of Clp Proteins in Expression of Virulence Properties of <i>Streptococcus mutans</i> . Journal of Bacteriology, 2009, 191, 2060-2068.                                                                        | 2.2 | 84        |
| 28 | Role of Unsaturated Fatty Acid Biosynthesis in Virulence of Streptococcus mutans. Infection and Immunity, 2007, 75, 1537-1539.                                                                                    | 2.2 | 58        |
| 29 | Smx Nuclease Is the Major, Low-pH-Inducible Apurinic/Apyrimidinic Endonuclease in Streptococcus mutans. Journal of Bacteriology, 2005, 187, 2705-2714.                                                            | 2.2 | 15        |
| 30 | The putative autolysin regulator LytR in Streptococcus mutans plays a role in cell division and is growth-phase regulated. Microbiology (United Kingdom), 2005, 151, 625-631.                                     | 1.8 | 91        |
| 31 | The F-ATPase Operon Promoter of Streptococcus mutans Is Transcriptionally Regulated in Response to External pH. Journal of Bacteriology, 2004, 186, 8524-8528.                                                    | 2.2 | 82        |
| 32 | The fabM Gene Product of Streptococcus mutans Is Responsible for the Synthesis of<br>Monounsaturated Fatty Acids and Is Necessary for Survival at Low pH. Journal of Bacteriology, 2004,<br>186, 4152-4158.       | 2.2 | 111       |
| 33 | Shifts in the Membrane Fatty Acid Profile of <i>Streptococcus mutans</i> Enhance Survival in Acidic Environmental Microbiology, 2004, 70, 929-936.                                                                | 3.1 | 189       |
| 34 | Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiology Letters, 2004, 238, 291-295.                                                                                                   | 1.8 | 107       |
| 35 | Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiology Letters, 2004, 238, 291-295.                                                                                                   | 1.8 | 60        |
| 36 | Genetic and Biochemical Characterization of the F-ATPase Operon from S treptococcus sanguis 10904.<br>Journal of Bacteriology, 2003, 185, 1525-1533.                                                              | 2.2 | 45        |

Robert G Quivey Jr

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Genetics of Acid Adaptation in Oral Streptococci. Critical Reviews in Oral Biology and Medicine, 2001, 12, 301-314.                                                 | 4.4 | 109       |
| 38 | Shifts in membrane fatty acid profiles associated with acid adaptation of <i>Streptococcus mutans</i> . FEMS Microbiology Letters, 2000, 189, 89-92.                | 1.8 | 105       |
| 39 | Adaptation of oral streptococci to low pH. Advances in Microbial Physiology, 2000, 42, 239-274.                                                                     | 2.4 | 124       |
| 40 | [33] Physiologic homeostasis and stress responses in oral biofilms. Methods in Enzymology, 1999, 310,<br>441-460.                                                   | 1.0 | 38        |
| 41 | Use of proteomics and PCR to elucidate changes in protein expression in oral streptococci.<br>Cytotechnology, 1998, 20, 165-179.                                    | 0.7 | 2         |
| 42 | Cloning and nucleotide sequence analysis of the Streptococcus mutans membrane-bound, proton-translocating ATPase operon. Gene, 1996, 183, 87-96.                    | 2.2 | 51        |
| 43 | Acid adaptation inStreptococcus mutansUA159 alleviates sensitization to environmental stress due to RecA deficiency. FEMS Microbiology Letters, 1995, 126, 257-262. | 1.8 | 77        |
| 44 | In vivo inactivation of the Streptococcus mutans recA gene mediated by PCR amplification and cloning of a recA DNA fragment. Gene, 1992, 116, 35-42.                | 2.2 | 31        |
| 45 | Polymerase chain reaction amplification, cloning, sequence determination and homologies of streptococcal ATPase-encoding DNAs. Gene, 1991, 97, 63-68.               | 2.2 | 22        |