
Agnete Kirkeby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1534729/publications.pdf Version: 2024-02-01

ACNETE KIDKERV

#	Article	IF	CITATIONS
1	MSLibrarian: Optimized Predicted Spectral Libraries for Data-Independent Acquisition Proteomics. Journal of Proteome Research, 2022, 21, 535-546.	3.7	9
2	Human Embryonic Stem Cell-Derived Dopaminergic Grafts Alleviate L-DOPA Induced Dyskinesia. Journal of Parkinson's Disease, 2022, 12, 1881-1896.	2.8	3
3	Neural tube patterning: From a minimal model for rostrocaudal patterning toward an integrated 3D model. IScience, 2021, 24, 102559.	4.1	1
4	Bringing Advanced Therapies for Parkinson's Disease to the Clinic: The Scientist's Perspective. Journal of Parkinson's Disease, 2021, 11, S135-S140.	2.8	12
5	Single cell transcriptomics identifies stem cell-derived graft composition in a model of Parkinson's disease. Nature Communications, 2020, 11, 2434.	12.8	54
6	Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nature Biotechnology, 2020, 38, 1265-1273.	17.5	114
7	Genetic modification increases the survival and the neuroregenerative properties of transplanted neural stem cells. JCI Insight, 2020, 5, .	5.0	24
8	Parkinson disease and growth factors — is GDNF good enough?. Nature Reviews Neurology, 2019, 15, 312-314.	10.1	25
9	Sense-Antisense IncRNA Pair Encoded by Locus 6p22.3 Determines Neuroblastoma Susceptibility via the USP36-CHD7-SOX9 Regulatory Axis. Cancer Cell, 2018, 33, 417-434.e7.	16.8	122
10	Targetâ€specific forebrain projections and appropriate synaptic inputs of hESCâ€derived dopamine neurons grafted to the midbrain of parkinsonian rats. Journal of Comparative Neurology, 2018, 526, 2133-2146.	1.6	50
11	IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2017, 9, 1207-1220.	4.8	40
12	Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nature Protocols, 2017, 12, 1962-1979.	12.0	177
13	Strategies for bringing stem cell-derived dopamine neurons to the clinic. Progress in Brain Research, 2017, 230, 165-190.	1.4	70
14	Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell, 2017, 20, 135-148.	11.1	215
15	Single-Cell Analysis Reveals a Close Relationship between Differentiating Dopamine and Subthalamic Nucleus Neuronal Lineages. Cell Stem Cell, 2017, 20, 29-40.	11.1	127
16	Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications. Stem Cell Research and Therapy, 2017, 8, 190.	5.5	35
17	hESC-derived neural progenitors prevent xenograft rejection through neonatal desensitisation. Experimental Neurology, 2016, 282, 78-85.	4.1	12
18	The stem cell niche finds its true north. Development (Cambridge), 2016, 143, 2877-2881.	2.5	4

Agnete Kirkeby

#	Article	IF	CITATIONS
19	Are Stem Cell-Based Therapies for Parkinson's Disease Ready for the Clinic in 2016?. Journal of Parkinson's Disease, 2016, 6, 57-63.	2.8	57
20	Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons. Stem Cell Reports, 2015, 4, 975-983.	4.8	92
21	Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor. Development (Cambridge), 2015, 142, 3166-3177.	2.5	34
22	Human ESC-Derived Dopamine Neurons Show Similar Preclinical Efficacy and Potency to Fetal Neurons when Grafted in a Rat Model of Parkinson's Disease. Cell Stem Cell, 2014, 15, 653-665.	11.1	373
23	X-Reactivation Impacts Human iPSC Differentiation Potential Towards Blood. Blood, 2013, 122, 4838-4838.	1.4	0
24	Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions. Cell Reports, 2012, 1, 703-714.	6.4	595
25	Building authentic midbrain dopaminergic neurons from stem cells - lessons from development. Translational Neuroscience, 2012, 3, .	1.4	5
26	Generating regionalized neuronal cells from pluripotency, a step-by-step protocol. Frontiers in Cellular Neuroscience, 2012, 6, 64.	3.7	36
27	Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10343-10348.	7.1	695
28	Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11602-11607.	7.1	42
29	Therapeutic window for nonerythropoietic carbamylated-erythropoietin to improve motor function following multiple infarct ischemic strokes in New Zealand white rabbits. Brain Research, 2008, 1238, 208-214.	2.2	32
30	High-dose erythropoietin alters platelet reactivity and bleeding time in rodents in contrast to the neuroprotective variant carbamyl-erythropoietin (CEPO). Thrombosis and Haemostasis, 2008, 99, 720-728.	3.4	53
31	The biological and ethical basis of the use of human embryonic stem cells for in vitro test systems or cell therapy. ALTEX: Alternatives To Animal Experimentation, 2008, , 163-190.	1.5	61
32	The biological and ethical basis of the use of human embryonic stem cells for in vitro test systems or cell therapy. ALTEX: Alternatives To Animal Experimentation, 2008, 25, 163-90.	1.5	27
33	Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen–glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures. Experimental Neurology, 2007, 204, 106-117.	4.1	75
34	Functional and immunochemical characterisation of different antibodies against the erythropoietin receptor. Journal of Neuroscience Methods, 2007, 164, 50-58.	2.5	60