
Caroline Menard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1534248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Indigenous Lens on Priorities for the Canadian Brain Research Strategy. Canadian Journal of Neurological Sciences, 2023, 50, 96-98.	0.5	4
2	The Canadian Brain Research Strategy: A Focus on Early Career Researchers. Canadian Journal of Neurological Sciences, 2022, 49, 168-170.	0.5	1
3	Neuromodulatory effect of interleukin $1^{\hat{l}^2}$ in the dorsal raphe nucleus on individual differences in aggression. Molecular Psychiatry, 2022, 27, 2563-2579.	7.9	14
4	Inflammationâ€driven brain and gut barrier dysfunction in stress and mood disorders. European Journal of Neuroscience, 2022, 55, 2851-2894.	2.6	54
5	Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nature Communications, 2022, 13, 164.	12.8	75
6	Sex differences in the blood–brain barrier: Implications for mental health. Frontiers in Neuroendocrinology, 2022, 65, 100989.	5.2	31
7	Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. European Journal of Neuroscience, 2021, 53, 183-221.	2.6	68
8	Central and peripheral stress-induced epigenetic mechanisms of resilience. Current Opinion in Psychiatry, 2021, 34, 1-9.	6.3	9
9	LRRK2 mutation alters behavioral, synaptic, and nonsynaptic adaptations to acute social stress. Journal of Neurophysiology, 2020, 123, 2382-2389.	1.8	16
10	Social Stress Induces Blood-Brain Barrier Leakiness and Molecular Alterations Promoting Depression or Stress Resilience. Biological Psychiatry, 2020, 87, S14-S15.	1.3	0
11	Depression and Social Defeat Stress Are Associated with Inhibitory Synaptic Changes in the Nucleus Accumbens. Journal of Neuroscience, 2020, 40, 6228-6233.	3.6	50
12	Molecular adaptations of the blood–brain barrier promote stress resilience vs. depression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3326-3336.	7.1	190
13	Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nature Neuroscience, 2020, 23, 638-650.	14.8	98
14	Multidimensional Predictors of Susceptibility and Resilience to Social Defeat Stress. Biological Psychiatry, 2019, 86, 483-491.	1.3	64
15	201. Stress Resilience vs. Vulnerability in Mood disorders, an Integrative Biological Approach. Biological Psychiatry, 2019, 85, S83-S84.	1.3	0
16	Role of Monocyte-Derived MicroRNA106bâ^1⁄425 in Resilience to Social Stress. Biological Psychiatry, 2019, 86, 474-482.	1.3	35
17	Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nature Communications, 2018, 9, 477.	12.8	185
18	Cell-type-specific role for nucleus accumbens neuroligin-2 in depression and stress susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1111-1116.	7.1	61

CAROLINE MENARD

#	Article	IF	CITATIONS
19	86. Role of the Epigenetic Agent Acetyl-L-Carnitine as Gating Biomarker in Depression and Influences of Childhood Trauma. Biological Psychiatry, 2018, 83, S35-S36.	1.3	0
20	87. Social Stress Induces Neurovascular Pathology Promoting Immune Infiltration and Depression. Biological Psychiatry, 2018, 83, S36.	1.3	3
21	The Tyrosine Phosphatase STEP Is Involved in Age-Related Memory Decline. Current Biology, 2018, 28, 1079-1089.e4.	3.9	20
22	Inflammatory Mediators in Mood Disorders: Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2018, 58, 411-428.	9.4	82
23	VGF function in depression and antidepressant efficacy. Molecular Psychiatry, 2018, 23, 1632-1642.	7.9	84
24	Inflamed Astrocytes: A Path to Depression Led by Menin. Neuron, 2018, 100, 511-513.	8.1	11
25	Parkinson's Disease-Linked LRRK2-G2019S Mutation Alters Synaptic Plasticity and Promotes Resilience to Chronic Social Stress in Young Adulthood. Journal of Neuroscience, 2018, 38, 9700-9711.	3.6	51
26	Non-invasive chemogenetics. Nature Biomedical Engineering, 2018, 2, 467-468.	22.5	4
27	Cell-Type-Specific Role of î"FosB in Nucleus Accumbens In Modulating Intermale Aggression. Journal of Neuroscience, 2018, 38, 5913-5924.	3.6	52
28	Immune and Neuroendocrine Mechanisms of Stress Vulnerability and Resilience. Neuropsychopharmacology, 2017, 42, 62-80.	5.4	241
29	Sub-chronic variable stress induces sex-specific effects on glutamatergic synapses in the nucleus accumbens. Neuroscience, 2017, 350, 180-189.	2.3	56
30	Establishment of a repeated social defeat stress model in female mice. Scientific Reports, 2017, 7, 12838.	3.3	176
31	Sex-specific transcriptional signatures in human depression. Nature Medicine, 2017, 23, 1102-1111.	30.7	532
32	Social stress induces neurovascular pathology promoting depression. Nature Neuroscience, 2017, 20, 1752-1760.	14.8	617
33	Integrative Analysis of Sex-Specific microRNA Networks Following Stress in Mouse Nucleus Accumbens. Frontiers in Molecular Neuroscience, 2016, 9, 144.	2.9	35
34	Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiology of Stress, 2016, 4, 15-22.	4.0	198
35	Basal forebrain projections to the lateral habenula modulate aggression reward. Nature, 2016, 534, 688-692.	27.8	193
36	Pathogenesis of depression: Insights from human and rodent studies. Neuroscience, 2016, 321, 138-162.	2.3	383

CAROLINE MENARD

#	Article	IF	CITATIONS
37	Signaling Pathways Relevant to Cognition-Enhancing Drug Targets. Handbook of Experimental Pharmacology, 2015, 228, 59-98.	1.8	17
38	Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress. Journal of Neuroscience, 2015, 35, 16362-16376.	3.6	308
39	Neuroimmune mechanisms of depression. Nature Neuroscience, 2015, 18, 1386-1393.	14.8	415
40	Clutamate presynaptic vesicular transporter and postsynaptic receptor levels correlate with spatial memory status in aging rat models. Neurobiology of Aging, 2015, 36, 1471-1482.	3.1	30
41	Neuroprotective action of resveratrol. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1195-1201.	3.8	291
42	Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging. Frontiers in Aging Neuroscience, 2014, 6, 81.	3.4	17
43	Possible Role of Dynorphins in Alzheimer's Disease and Age-Related Cognitive Deficits. Neurodegenerative Diseases, 2014, 13, 82-85.	1.4	25
44	O4-09-03: LOW HIPPOCAMPAL PRODYNORPHIN LEVELS ARE ASSOCIATED WITH MAINTENANCE OF MEMORY IN VARIOUS AGING RODENT MODELS. , 2014, 10, P269-P269.		0
45	Knockdown of Prodynorphin Gene Prevents Cognitive Decline, Reduces Anxiety, and Rescues Loss of Group 1 Metabotropic Glutamate Receptor Function in Aging. Journal of Neuroscience, 2013, 33, 12792-12804.	3.6	26
46	Impaired structural hippocampal plasticity is associated with emotional and memory deficits in the olfactory bulbectomized rat. Neuroscience, 2013, 236, 233-243.	2.3	47
47	The immune marker CD68 correlates with cognitive impairment in normally aged rats. Neurobiology of Aging, 2013, 34, 1971-1976.	3.1	18
48	Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Frontiers in Cellular Neuroscience, 2013, 7, 281.	3.7	70
49	Successful Cognitive Aging in Rats: A Role for mGluR5 Glutamate Receptors, Homer 1 Proteins and Downstream Signaling Pathways. PLoS ONE, 2012, 7, e28666.	2.5	87
50	Group 1 Metabotropic Glutamate Receptor Function and Its Regulation of Learning and Memory in the Aging Brain. Frontiers in Pharmacology, 2012, 3, 182.	3.5	69
51	Genomic and proteomic strategies to identify novel targets potentially involved in learning and memory. Trends in Pharmacological Sciences, 2011, 32, 43-52.	8.7	28
52	AMPA receptorâ€mediated cell death is reduced by docosahexaenoic acid but not by eicosapentaenoic acid in area CA1 of hippocampal slice cultures. Journal of Neuroscience Research, 2009, 87, 876-886.	2.9	34
53	Calciumâ€independent phospholipase A ₂ influences AMPAâ€mediated toxicity of hippocampal slices by regulating the GluR1 subunit in synaptic membranes. Hippocampus, 2007, 17, 1109-1120.	1.9	8
54	A novel role for calcium-independent phospholipase A2 in α-amino-3-hydroxy-5-methylisoxazole-propionate receptor regulation during long-term potentiation. European Journal of Neuroscience, 2006, 23, 505-513.	2.6	18

CAROLINE MENARD

#	Article	IF	CITATIONS
55	AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A2and 5-lipoxygenase activities. Hippocampus, 2005, 15, 370-380.	1.9	28
56	Phosphorylation of AMPA receptor subunits is differentially regulated by phospholipase A2 inhibitors. Neuroscience Letters, 2005, 389, 51-56.	2.1	16
57	Strain-related variations of AMPA receptor modulation by calcium-dependent mechanisms in the hippocampus: contribution of lipoxygenase metabolites of arachidonic acid. Brain Research, 2004, 1010, 134-143.	2.2	12
58	Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus, 2004, 14, 319-325.	1.9	36