Vesna Blazevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1533727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antigenicity and immunogenicity of HA2 and M2e influenza virus antigens conjugated to norovirus-like, VP1 capsid-based particles by the SpyTag/SpyCatcher technology. Virology, 2022, 566, 89-97.	2.4	8
2	Safety and immunogenicity studies in animal models support clinical development of a bivalent norovirus-like particle vaccine produced in plants. Vaccine, 2022, 40, 977-987.	3.8	6
3	Expression of influenza A virus-derived peptides on a rotavirus VP6-based delivery platform. Archives of Virology, 2021, 166, 213-217.	2.1	4
4	Modular vaccine platform based on the norovirus-like particle. Journal of Nanobiotechnology, 2021, 19, 25.	9.1	15
5	Fusion Protein of Rotavirus VP6 and SARS-CoV-2 Receptor Binding Domain Induces T Cell Responses. Vaccines, 2021, 9, 733.	4.4	4
6	Seroprevalence and SARS-CoV-2 cross-reactivity of endemic coronavirus OC43 and 229E antibodies in Finnish children and adults. Clinical Immunology, 2021, 229, 108782.	3.2	24
7	Rotavirus Inner Capsid VP6 Acts as an Adjuvant in Formulations with Particulate Antigens Only. Vaccines, 2020, 8, 365.	4.4	7
8	Internalization and antigen presentation by mouse dendritic cells of rotavirus VP6 preparations differing in nanostructure. Molecular Immunology, 2020, 123, 26-31.	2.2	6
9	Rotavirus VP6 Adjuvant Effect on Norovirus GII.4 Virus-Like Particle Uptake and Presentation by Bone Marrow-Derived Dendritic Cells In Vitro and In Vivo. Journal of Immunology Research, 2020, 2020, 1-14.	2.2	10
10	Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Research, 2019, 171, 104595.	4.1	15
11	A comparative study of the effect of UV and formalin inactivation on the stability and immunogenicity of a Coxsackievirus B1 vaccine. Vaccine, 2019, 37, 5962-5971.	3.8	19
12	Combination of three virus-derived nanoparticles as a vaccine against enteric pathogens; enterovirus, norovirus and rotavirus. Vaccine, 2019, 37, 7509-7518.	3.8	19
13	Immunological Cross-Reactivity of an Ancestral and the Most Recent Pandemic Norovirus GII.4 Variant. Viruses, 2019, 11, 91.	3.3	12
14	Rotavirus VP6 as an Adjuvant for Bivalent Norovirus Vaccine Produced in Nicotiana benthamiana. Pharmaceutics, 2019, 11, 229.	4.5	18
15	Earlyâ€life exposure to common virus infections did not differ between coeliac disease patients and controls. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1709-1716.	1.5	11
16	Development of T cell immunity to norovirus and rotavirus in children under five years of age. Scientific Reports, 2019, 9, 3199.	3.3	24
17	Simultaneous Immunization with Multivalent Norovirus VLPs Induces Better Protective Immune Responses to Norovirus than Sequential Immunization. Viruses, 2019, 11, 1018.	3.3	10
18	Functionality and avidity of norovirus-specific antibodies and T cells induced by GII.4 virus-like particles alone or co-administered with different genotypes. Vaccine, 2018, 36, 484-490.	3.8	6

VESNA BLAZEVIC

#	Article	IF	CITATIONS
19	Identification of a First Human Norovirus CD8+ T Cell Epitope Restricted to HLA-A*0201 Allele. Frontiers in Immunology, 2018, 9, 2782.	4.8	7
20	Norovirus GII.17 Virus-Like Particles Bind to Different Histo-Blood Group Antigens and Cross-React with Genogroup II-Specific Mouse Sera. Viral Immunology, 2018, 31, 649-657.	1.3	7
21	Norovirus-specific mucosal antibodies correlate to systemic antibodies and block norovirus virus-like particles binding to histo-blood group antigens. Clinical Immunology, 2018, 197, 110-117.	3.2	13
22	Intradermal and intranasal immunizations with oligomeric middle layer rotavirus VP6 induce Th1, Th2 and Th17â€T cell subsets and CD4 + T lymphocytes with cytotoxic potential. Antiviral Research, 2018, 157, 1-8.	4.1	7
23	Parenterally Administered Norovirus GII.4 Virus-Like Particle Vaccine Formulated with Aluminum Hydroxide or Monophosphoryl Lipid A Adjuvants Induces Systemic but Not Mucosal Immune Responses in Mice. Journal of Immunology Research, 2018, 2018, 1-8.	2.2	8
24	Rotavirus capsid VP6 tubular and spherical nanostructures act as local adjuvants when co-delivered with norovirus VLPs. Clinical and Experimental Immunology, 2017, 189, 331-341.	2.6	30
25	Stable immobilisation of His-tagged proteins on BLI biosensor surface using cobalt. Sensors and Actuators B: Chemical, 2017, 243, 104-113.	7.8	24
26	Live baculovirus acts as a strong B and T cell adjuvant for monomeric and oligomeric protein antigens. Virology, 2017, 511, 114-122.	2.4	18
27	Rotavirus vaccination and infection induce VP6â€specific IgA responses. Journal of Medical Virology, 2017, 89, 239-245.	5.0	8
28	Rotavirus Recombinant VP6 Nanotubes Act as an Immunomodulator and Delivery Vehicle for Norovirus Virus-Like Particles. Journal of Immunology Research, 2016, 2016, 1-13.	2.2	29
29	Norovirus-Specific Memory T Cell Responses in Adult Human Donors. Frontiers in Microbiology, 2016, 7, 1570.	3.5	29
30	Mucosal Antibodies Induced by Intranasal but Not Intramuscular Immunization Block Norovirus GII.4 Virus-Like Particle Receptor Binding. Viral Immunology, 2016, 29, 315-319.	1.3	19
31	Assessment of Functional Norovirus Antibody Responses by Blocking Assay in Mice. Methods in Molecular Biology, 2016, 1403, 259-268.	0.9	1
32	Type-specific and cross-reactive antibodies and T cell responses in norovirus VLP immunized mice are targeted both to conserved and variable domains of capsid VP1 protein. Molecular Immunology, 2016, 78, 27-37.	2.2	17
33	Simple and efficient ultrafiltration method for purification of rotavirus VP6 oligomeric proteins. Archives of Virology, 2016, 161, 3219-3223.	2.1	12
34	Development and maturation of norovirus antibodies in childhood. Microbes and Infection, 2016, 18, 263-269.	1.9	25
35	Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine. Human Vaccines and Immunotherapeutics, 2016, 12, 740-748.	3.3	30
36	Induction of homologous and cross-reactive GII.4-specific blocking antibodies in children after GII.4 New Orleans norovirus infection. Journal of Medical Virology, 2015, 87, 1656-1661.	5.0	20

VESNA BLAZEVIC

#	Article	IF	CITATIONS
37	Norovirus Vaccine: One Step Closer. Journal of Infectious Diseases, 2015, 211, 853-855.	4.0	16
38	Protection against live rotavirus challenge in mice induced by parenteral and mucosal delivery of VP6 subunit rotavirus vaccine. Archives of Virology, 2015, 160, 2075-2078.	2.1	43
39	Rapid and sensitive detection of norovirus antibodies in human serum with a biolayer interferometry biosensor. Sensors and Actuators B: Chemical, 2015, 221, 507-514.	7.8	34
40	His-tagged norovirus-like particles: A versatile platform for cellular delivery and surface display. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 22-31.	4.3	39
41	Multiple consecutive norovirus infections in the first 2Âyears of life. European Journal of Pediatrics, 2015, 174, 1679-1683.	2.7	24
42	Genotype Considerations for Virus-Like Particle-Based Bivalent Norovirus Vaccine Composition. Vaccine Journal, 2015, 22, 656-663.	3.1	31
43	Immune responses elicited against rotavirus middle layer protein VP6 inhibit viral replication in vitro and in vivo. Human Vaccines and Immunotherapeutics, 2014, 10, 2039-2047.	3.3	43
44	High Serum Levels of Norovirus Genotype-Specific Blocking Antibodies Correlate With Protection From Infection in Children. Journal of Infectious Diseases, 2014, 210, 1755-1762.	4.0	73
45	Genetic analyses of norovirus GII.4 variants in Finnish children from 1998 to 2013. Infection, Genetics and Evolution, 2014, 26, 65-71.	2.3	15
46	Comparison of human saliva and synthetic histo-blood group antigens usage as ligands in norovirus-like particle binding and blocking assays. Microbes and Infection, 2014, 16, 472-480.	1.9	35
47	Pre-existing Immunity to Norovirus GII-4 Virus-Like Particles Does Not Impair <i>de Novo</i> Immune Responses to Norovirus GII-12 Genotype. Viral Immunology, 2013, 26, 167-170.	1.3	12
48	Characterization and immunogenicity of norovirus capsid-derived virus-like particles purified by anion exchange chromatography. Archives of Virology, 2013, 158, 933-942.	2.1	21
49	Trivalent Combination Vaccine Induces Broad Heterologous Immune Responses to Norovirus and Rotavirus in Mice. PLoS ONE, 2013, 8, e70409.	2.5	88
50	Comparative immunogenicity in mice of rotavirus VP6 tubular structures and virus-like particles. Human Vaccines and Immunotherapeutics, 2013, 9, 1991-2001.	3.3	31
51	Norovirus genotypes in endemic acute gastroenteritis of infants and children in Finland between 1994 and 2007. Epidemiology and Infection, 2012, 140, 268-275.	2.1	38
52	A comparison of immunogenicity of norovirus GIIâ€4 virusâ€like particles and Pâ€particles. Immunology, 2012, 135, 89-99.	4.4	83
53	Production and characterization of virus-like particles and the P domain protein of GII.4 norovirus. Journal of Virological Methods, 2012, 179, 1-7.	2.1	38
54	Noroviruses as a major cause of acute gastroenteritis in children in Finland, 2009–2010. Scandinavian Journal of Infectious Diseases, 2011, 43, 804-808.	1.5	58

Vesna Blazevic

#	Article	IF	CITATIONS
55	Norovirus VLPs and rotavirus VP6 protein as combined vaccine for childhood gastroenteritis. Vaccine, 2011, 29, 8126-8133.	3.8	123
56	Immunization with dendritic cells transfected in vivo with HIV-1 plasmid DNA induces HIV-1-specific immune responses. Archives of Virology, 2011, 156, 1607-1610.	2.1	2
57	Prevalence of norovirus Gllâ€4 antibodies in Finnish children. Journal of Medical Virology, 2011, 83, 525-531.	5.0	67
58	Norovirus GII-4 Causes a More Severe Gastroenteritis Than Other Noroviruses in Young Children. Journal of Infectious Diseases, 2011, 203, 1442-1444.	4.0	67
59	A comparison of methods for purification and concentration of norovirus GII-4 capsid virus-like particles. Archives of Virology, 2010, 155, 1855-1858.	2.1	77
60	Combining DNA technologies and different modes of immunization for induction of humoral and cellular anti-HIV-1 immune responses. Vaccine, 2009, 27, 184-186.	3.8	10
61	PVII-6 Prevalence of norovirus GII-4 antibodies in Finnish children. Journal of Clinical Virology, 2009, 46, S38-S39.	3.1	Ο
62	GTU®-MultiHIV DNA vaccine results in protection in a novel P815 tumor challenge model. Vaccine, 2007, 25, 3293-3301.	3.8	7
63	Induction of Human Immunodeficiency Virus Type-1-Specific Immunity with a Novel Gene Transport Unit (GTU)-MultiHIV DNA Vaccine. AIDS Research and Human Retroviruses, 2006, 22, 667-677.	1.1	24
64	A DNA HIV-1 vaccine based on a fusion gene expressing non-structural and structural genes of consensus sequence of the A–C subtypes and the ancestor sequence of the F–H subtypes. Preclinical and clinical studies. Microbes and Infection, 2005, 7, 1405-13.	1.9	20
65	Primary Cutaneous T-Cell Lymphomas Show a Deletion or Translocation Affecting <i>NAV3</i> , the Human <i>UNC-53</i> Homologue. Cancer Research, 2005, 65, 8101-8110.	0.9	93
66	Cross-Clade Protection Induced by Human Immunodeficiency Virus-1 DNA Immunogens Expressing Consensus Sequences of Multiple Genes and Epitopes From Subtypes A, B, C, and FGH. Viral Immunology, 2005, 18, 678-688.	1.3	24
67	A novel tumour necrosis factor receptor mutation in a Finnish family with periodic fever syndrome. Scandinavian Journal of Rheumatology, 2004, 33, 140-144.	1.1	10
68	Analysis of the costimulatory requirements for generating human virus-specific in vitro T helper and effector responses. Journal of Clinical Immunology, 2001, 21, 293-302.	3.8	6
69	Highly Active Antiretroviral Therapy in Human Immunodeficiency Virus Type 1-Infected Children: Analysis of Cellular Immune Responses. Vaccine Journal, 2001, 8, 943-948.	2.6	16
70	Influenza Virus–Stimulated Generation of Anti–Human Immunodeficiency Virus (HIV) Activity after Influenza Vaccination in HIVâ€Infected Individuals and Healthy Control Subjects. Journal of Infectious Diseases, 2001, 183, 1000-1008.	4.0	17
71	Alloantigenic stimulation bypasses CD28-B7 costimulatory blockade by an interleukin-2-dependent mechanism. Journal of Leukocyte Biology, 2000, 67, 817-824.	3.3	4
72	Alloantigen-induced anti-HIV activity occurs prior to reverse transcription and can be generated by leukocytes from HIV-infected individuals. Blood, 2000, 95, 1875-1876.	1.4	22

VESNA BLAZEVIC

#	Article	IF	CITATIONS
73	T Cell Responses to Recall Antigens, Alloantigen, and Mitogen of HIV-Infected Patients Receiving Long-Term Combined Antiretroviral Therapy. AIDS Research and Human Retroviruses, 2000, 16, 1887-1893.	1.1	16
74	Inhibition of Human Immunodeficiency Virus Type 1 Replication prior to Reverse Transcription by Influenza Virus Stimulation. Journal of Virology, 2000, 74, 4505-4511.	3.4	41
75	Comparison of in vitro immunostimulatory potential of live and inactivated influenza viruses. Human Immunology, 2000, 61, 845-849.	2.4	25
76	Immune-Based Approaches for Control of HIV Infection and Viral-Induced Immunopathogenesis. Clinical Immunology, 2000, 97, 1-8.	3.2	2
77	Inhibition of Human Immunodeficiency Virus Type 1 Replication prior to Reverse Transcription by Influenza Virus Stimulation. Journal of Virology, 2000, 74, 4505-4511.	3.4	3
78	Alloantigen-induced anti-HIV activity occurs prior to reverse transcription and can be generated by leukocytes from HIV-infected individuals. Blood, 2000, 95, 1875-6.	1.4	3
79	RANTES, MIP and interleukin-16 in HIV infection. Aids, 1996, 10, 1435-1436.	2.2	22
80	Interleukin-10 Gene Expression Induced by HIV-1 Tat and Rev in the Cells of HIV-1 Infected Individuals. Journal of Acquired Immune Deficiency Syndromes, 1996, 13, 208-214.	0.3	27
81	Helper and Cytotoxic T Cell Responses of HIV Type 1-Infected Individuals to Synthetic Peptides of HIV Type 1 Rev. AIDS Research and Human Retroviruses, 1995, 11, 1335-1342.	1.1	26
82	Helper T-cell recognition of HIV-1 Tat synthetic peptides. Journal of Acquired Immune Deficiency Syndromes, 1993, 6, 881-90.	1.0	9