List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1533666/publications.pdf Version: 2024-02-01

Ηονιζεμινι Ηου

#	Article	IF	CITATIONS
1	Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodiumâ€ l on Batteries with Ultralong Cycle Life. Advanced Materials, 2015, 27, 7861-7866.	21.0	1,055
2	Carbon Anode Materials for Advanced Sodiumâ€ion Batteries. Advanced Energy Materials, 2017, 7, 1602898.	19.5	858
3	Largeâ€Area Carbon Nanosheets Doped with Phosphorus: A Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Advanced Science, 2017, 4, 1600243.	11.2	450
4	Tailoring Rodâ€Like FeSe ₂ Coated with Nitrogenâ€Doped Carbon for Highâ€Performance Sodium Storage. Advanced Functional Materials, 2018, 28, 1801765.	14.9	287
5	Porous NiCo ₂ O ₄ spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. Journal of Materials Chemistry A, 2015, 3, 866-877.	10.3	282
6	Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy, 2021, 83, 105854.	16.0	264
7	Grapheneâ€Rich Wrapped Petalâ€Like Rutile TiO ₂ tuned by Carbon Dots for Highâ€Performance Sodium Storage. Advanced Materials, 2016, 28, 9391-9399.	21.0	262
8	H ⁺ â€Insertion Boosted αâ€MnO ₂ for an Aqueous Znâ€Ion Battery. Small, 2020, 16, e1905842.	10.0	260
9	Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy, 2019, 65, 104038.	16.0	250
10	Hierarchical Hollowâ€Microsphere Metal–Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage. Advanced Energy Materials, 2019, 9, 1803035.	19.5	234
11	Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties. Journal of Power Sources, 2014, 267, 888-900.	7.8	228
12	Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy, 2018, 48, 617-629.	16.0	227
13	Advanced Hierarchical Vesicular Carbon Coâ€Doped with S, P, N for Highâ€Rate Sodium Storage. Advanced Science, 2018, 5, 1800241.	11.2	225
14	Ti ³⁺ Selfâ€Doped Dark Rutile TiO ₂ Ultrafine Nanorods with Durable Highâ€Rate Capability for Lithiumâ€lon Batteries. Advanced Functional Materials, 2015, 25, 6793-6801.	14.9	221
15	One-Dimensional Rod-Like Sb ₂ S ₃ -Based Anode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 19362-19369.	8.0	218
16	Carbon dots supported upon N-doped TiO ₂ nanorods applied into sodium and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5648-5655.	10.3	215
17	The development of carbon dots: From the perspective of materials chemistry. Materials Today, 2021, 51, 188-207.	14.2	213
18	Sodium/Lithium Storage Behavior of Antimony Hollow Nanospheres for Rechargeable Batteries. ACS Applied Materials & Interfaces, 2014, 6, 16189-16196.	8.0	199

#	Article	IF	CITATIONS
19	Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Materials, 2018, 12, 310-323.	18.0	196
20	Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. ACS Applied Materials & Interfaces, 2016, 8, 9142-9151.	8.0	193
21	Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale, 2019, 11, 16-33.	5.6	184
22	Kilogram-Scale Synthesis and Functionalization of Carbon Dots for Superior Electrochemical Potassium Storage. ACS Nano, 2021, 15, 6872-6885.	14.6	184
23	A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. Waste Management, 2019, 85, 529-537.	7.4	182
24	Garnet Solid Electrolyte for Advanced Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2021, 11, 2000648.	19.5	182
25	Layerâ€Tunable Phosphorene Modulated by the Cation Insertion Rate as a Sodiumâ€Storage Anode. Advanced Materials, 2017, 29, 1702372.	21.0	162
26	Nitrogen Doped/Carbon Tuning Yolk‣ike TiO ₂ and Its Remarkable Impact on Sodium Storage Performances. Advanced Energy Materials, 2017, 7, 1600173.	19.5	159
27	Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2971-2977.	10.3	156
28	Pseudoâ€Bonding and Electricâ€Field Harmony for Liâ€Rich Mnâ€Based Oxide Cathode. Advanced Functional Materials, 2020, 30, 2004302.	14.9	149
29	Controllable Chain‣ength for Covalent Sulfur–Carbon Materials Enabling Stable and High apacity Sodium Storage. Advanced Energy Materials, 2019, 9, 1803478.	19.5	145
30	Controllable Interlayer Spacing of Sulfurâ€Doped Graphitic Carbon Nanosheets for Fast Sodiumâ€lon Batteries. Small, 2017, 13, 1700762.	10.0	144
31	Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery. Advanced Functional Materials, 2014, 24, 4349-4356.	14.9	142
32	High Ionâ€Conducting Solidâ€State Composite Electrolytes with Carbon Quantum Dot Nanofillers. Advanced Science, 2018, 5, 1700996.	11.2	141
33	Prelithiation/Presodiation Techniques for Advanced Electrochemical Energy Storage Systems: Concepts, Applications, and Perspectives. Advanced Functional Materials, 2021, 31, 2005581.	14.9	138
34	Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Letters, 2021, 6, 675-683.	17.4	135
35	Yolk–Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity. ACS Applied Materials & Interfaces, 2019, 11, 10829-10840. 	8.0	132
36	Ultrafast Sodium Full Batteries Derived from XFe (X = Co, Ni, Mn) Prussian Blue Analogs. Advanced Materials, 2019, 31, e1806092.	21.0	132

#	Article	IF	CITATIONS
37	Metal–Organic Frameworkâ€Đerived Materials for Sodium Energy Storage. Small, 2018, 14, 1702648.	10.0	129
38	Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Materials, 2020, 32, 306-319.	18.0	126
39	An Asymmetric Ultracapacitors Utilizing α-Co(OH)2/Co3O4 Flakes Assisted by Electrochemically Alternating Voltage. Electrochimica Acta, 2014, 141, 234-240.	5.2	121
40	Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries. Journal of Power Sources, 2015, 284, 227-235.	7.8	119
41	Heteroatom-doped carbon inlaid with Sb2X3 (XÂ=ÂS, Se) nanodots for high-performance potassium-ion batteries. Chemical Engineering Journal, 2020, 385, 123838.	12.7	118
42	Alternating Voltage Introduced NiCo Double Hydroxide Layered Nanoflakes for an Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2015, 7, 22741-22744.	8.0	117
43	Three-Dimensional Hierarchical Framework Assembled by Cobblestone-Like CoSe ₂ @C Nanospheres for Ultrastable Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 14716-14726.	8.0	116
44	A kinetically well-matched full-carbon sodium-ion capacitor. Journal of Materials Chemistry A, 2019, 7, 13540-13549.	10.3	116
45	Functionalized carbon dots for advanced batteries. Energy Storage Materials, 2021, 37, 8-39.	18.0	116
46	Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. EScience, 2022, 2, 116-124.	41.6	116
47	Interfacial challenges towards stable Li metal anode. Nano Energy, 2021, 79, 105507.	16.0	115
48	Cube-shaped Porous Carbon Derived from MOF-5 as Advanced Material for Sodium-Ion Batteries. Electrochimica Acta, 2016, 196, 413-421.	5.2	114
49	Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries. Nano-Micro Letters, 2020, 12, 16.	27.0	114
50	Multidimensional Evolution of Carbon Structures Underpinned by Temperatureâ€Induced Intermediate of Chloride for Sodiumâ€Ion Batteries. Advanced Science, 2018, 5, 1800080.	11.2	112
51	Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering. Nano-Micro Letters, 2020, 12, 121.	27.0	111
52	Hierarchical NiS ₂ Modified with Bifunctional Carbon for Enhanced Potassiumâ€lon Storage. Advanced Functional Materials, 2019, 29, 1903454.	14.9	109
53	Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery. Chemical Engineering Journal, 2020, 402, 125509.	12.7	109
54	The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: The influences of morphology structure, phase evolution and interface property. Energy Storage Materials, 2019, 16, 267-280.	18.0	107

#	Article	IF	CITATIONS
55	Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chemical Engineering Journal, 2020, 395, 125054.	12.7	106
56	Comprehensive Understanding of Sodiumâ€lon Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments. Advanced Energy Materials, 2021, 11, 2003804.	19.5	105
57	Investigation of the Sodium Ion Pathway and Cathode Behavior in Na ₃ V ₂ (PO ₄) ₂ F ₃ Combined via a First Principles Calculation. Langmuir, 2014, 30, 12438-12446.	3.5	104
58	Nickel Chelate Derived NiS ₂ Decorated with Bifunctional Carbon: An Efficient Strategy to Promote Sodium Storage Performance. Advanced Functional Materials, 2018, 28, 1803690.	14.9	104
59	Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries. Chemistry of Materials, 2017, 29, 7313-7322.	6.7	102
60	N-Rich carbon-coated Co ₃ S ₄ ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale, 2018, 10, 18786-18794.	5.6	101
61	Carbon quantum dot coated Mn ₃ O ₄ with enhanced performances for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16824-16830.	10.3	100
62	Rodlike Sb ₂ Se ₃ Wrapped with Carbon: The Exploring of Electrochemical Properties in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 34979-34989.	8.0	100
63	Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. Energy Storage Materials, 2020, 27, 124-132.	18.0	98
64	Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy, 2022, 92, 106752.	16.0	98
65	Enhanced sodium storage behavior of carbon coated anatase TiO ₂ hollow spheres. Journal of Materials Chemistry A, 2015, 3, 18944-18952.	10.3	96
66	Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Materials Chemistry and Physics, 2019, 223, 46-52.	4.0	95
67	High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Science Bulletin, 2021, 66, 1858-1868.	9.0	94
68	Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries. ACS Nano, 2019, 13, 10787-10797.	14.6	90
69	High‥ield Carbon Dots Interlayer for Ultra‣table Zinc Batteries. Advanced Energy Materials, 2022, 12, .	19.5	90
70	An electrochemical exploration of hollow NiCo 2 O 4 submicrospheres and its capacitive performances. Journal of Power Sources, 2015, 287, 307-315.	7.8	89
71	Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochimica Acta, 2019, 299, 540-548.	5.2	87
72	Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Science Bulletin, 2020, 65, 1003-1012.	9.0	87

#	Article	IF	CITATIONS
73	An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium-Ion Batteries. Electrochimica Acta, 2014, 146, 328-334.	5.2	84
74	N-rich carbon coated CoSnO ₃ derived from <i>in situ</i> construction of a Co–MOF with enhanced sodium storage performance. Journal of Materials Chemistry A, 2018, 6, 4839-4847.	10.3	84
75	Bi Dots Confined by Functional Carbon as Highâ€Performance Anode for Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2000756.	14.9	84
76	Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Materials Chemistry and Physics, 2019, 229, 303-309.	4.0	82
77	Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green Chemistry, 2017, 19, 4622-4632.	9.0	81
78	Stabilizing Intermediate Phases via Efficient Entrapment Effects of Layered VS ₄ /SnS@C Heterostructure for Ultralong Lifespan Potassiumâ€kon Batteries. Advanced Functional Materials, 2021, 31, 2103802.	14.9	81
79	Challenges and Strategies towards Singleâ€Crystalline Niâ€Rich Layered Cathodes. Advanced Energy Materials, 2022, 12, .	19.5	81
80	Pinecone-like hierarchical anatase TiO ₂ bonded with carbon enabling ultrahigh cycling rates for sodium storage. Journal of Materials Chemistry A, 2016, 4, 12591-12601.	10.3	78
81	Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS Nano, 2021, 15, 6061-6104.	14.6	77
82	Sizeâ€Tunable Oliveâ€Like Anatase TiO ₂ Coated with Carbon as Superior Anode for Sodiumâ€lon Batteries. Small, 2016, 12, 5554-5563.	10.0	76
83	Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn–air batteries. Nano Energy, 2022, 91, 106675.	16.0	76
84	Advanced Preâ€Diagnosis Method of Biomass Intermediates Toward High Energy Dualâ€Carbon Potassiumâ€ion Capacitor. Advanced Energy Materials, 2022, 12, .	19.5	76
85	Ultrafine nickel oxide quantum dots enbedded with few-layer exfoliative graphene for an asymmetric supercapacitor: Enhanced capacitances by alternating voltage. Journal of Power Sources, 2015, 298, 241-248.	7.8	75
86	Nickel nanoparticles supported on nitrogen-doped honeycomb-like carbon frameworks for effective methanol oxidation. RSC Advances, 2017, 7, 14152-14158.	3.6	75
87	Highâ€Throughput Production of Cheap Mineralâ€Based Heterostructures for High Power Sodium Ion Capacitors. Advanced Functional Materials, 2022, 32, .	14.9	75
88	Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy, 2018, 54, 26-38.	16.0	74
89	3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. Electrochimica Acta, 2014, 149, 144-151.	5.2	72
90	The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode. Journal of Power Sources, 2017, 366, 249-258.	7.8	72

#	Article	IF	CITATIONS
91	Biâ€Based Electrode Materials for Alkali Metalâ€ion Batteries. Small, 2020, 16, e2004022.	10.0	71
92	An electrochemical investigation of rutile TiO ₂ microspheres anchored by nanoneedle clusters for sodium storage. Physical Chemistry Chemical Physics, 2015, 17, 15764-15770.	2.8	70
93	High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion. Electrochimica Acta, 2014, 146, 142-150.	5.2	69
94	3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. Journal of Materials Chemistry A, 2017, 5, 23550-23558.	10.3	69
95	Surfaceâ€Driven Energy Storage Behavior of Dualâ€Heteroatoms Functionalized Carbon Material. Advanced Functional Materials, 2019, 29, 1900941.	14.9	68
96	Enabling the sustainable recycling of LiFePO ₄ from spent lithium-ion batteries. Green Chemistry, 2022, 24, 2506-2515.	9.0	68
97	Atomical Reconstruction and Cationic Reordering for Nickelâ€Rich Layered Cathodes. Advanced Energy Materials, 2022, 12, .	19.5	67
98	Electrochemically Exfoliated Phosphorene–Graphene Hybrid for Sodiumâ€ i on Batteries. Small Methods, 2019, 3, 1800328.	8.6	66
99	Ultra-Low-Dose Pre-Metallation Strategy Served for Commercial Metal-Ion Capacitors. Nano-Micro Letters, 2022, 14, 53.	27.0	65
100	Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale, 2020, 12, 3677-3685.	5.6	64
101	Mechanistic investigation of ion migration in Na ₃ V ₂ (PO ₄) ₂ F ₃ hybrid-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 159-165.	2.8	62
102	Dianion Induced Electron Delocalization of Trifunctional Electrocatalysts for Rechargeable Zn–Air Batteries and Selfâ€Powered Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	62
103	Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Materials Chemistry and Physics, 2018, 203, 185-192.	4.0	61
104	Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase. Journal of Power Sources, 2015, 282, 358-367.	7.8	60
105	Voltageâ€Induced Highâ€Efficient In Situ Presodiation Strategy for Sodium Ion Capacitors. Small Methods, 2020, 4, 1900763.	8.6	60
106	Olivine LiMn _x Fe _{1â^²x} PO ₄ cathode materials for lithium ion batteries: restricted factors of rate performances. Journal of Materials Chemistry A, 2021, 9, 14214-14232.	10.3	60
107	Carbon materials for high-performance lithium-ion capacitor. Current Opinion in Electrochemistry, 2020, 21, 31-39.	4.8	59
108	Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. Journal of Materials Chemistry A, 2017, 5, 24353-24360.	10.3	58

#	Article	IF	CITATIONS
109	The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Science China Materials, 2019, 62, 1127-1138.	6.3	58
110	High Sulfur-Doped Hard Carbon with Advanced Potassium Storage Capacity via a Molten Salt Method. ACS Applied Materials & Interfaces, 2020, 12, 30431-30437.	8.0	58
111	Cypress leaf-like Sb as anode material for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17549-17552.	10.3	57
112	3D Porous Carbon Encapsulated SnO2 Nanocomposite for Ultrastable Sodium Ion Batteries. Electrochimica Acta, 2016, 214, 156-164.	5.2	57
113	Advanced Batteryâ€Type Anode Materials for Highâ€Performance Sodiumâ€lon Capacitors. Small Methods, 2020, 4, 2000401.	8.6	56
114	Sodium titanate cuboid as advanced anode material for sodium ion batteries. Journal of Power Sources, 2016, 305, 200-208.	7.8	55
115	Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 26118-26125.	8.0	55
116	Carbon Dots Evoked Li Ion Dynamics for Solid State Battery. Small, 2021, 17, e2102978.	10.0	54
117	Electrochemical Investigation of Natural Ore Molybdenite (MoS ₂) as a First-Hand Anode for Lithium Storages. ACS Applied Materials & Interfaces, 2018, 10, 6378-6389.	8.0	52
118	Molecularly Compensated Preâ€Metallation Strategy for Metalâ€Ion Batteries and Capacitors. Angewandte Chemie - International Edition, 2021, 60, 17070-17079.	13.8	52
119	Element substitution of a spinel LiMn ₂ O ₄ cathode. Journal of Materials Chemistry A, 2021, 9, 21532-21550.	10.3	51
120	NiSb alloy hollow nanospheres as anode materials for rechargeable lithium ion batteries. Chemical Communications, 2014, 50, 8201-8203.	4.1	49
121	Interfacially Redistributed charge for robust lithium metal anode. Nano Energy, 2021, 87, 106212.	16.0	48
122	Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67, 524-548.	12.9	47
123	Size-Tunable Single-Crystalline Anatase TiO ₂ Cubes as Anode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 3923-3930.	3.1	46
124	Mo-doped Gray Anatase TiO 2 : Lattice Expansion for Enhanced Sodium Storage. Electrochimica Acta, 2016, 219, 227-234.	5.2	46
125	Reversible OP4 phase in P2–Na2/3Ni1/3Mn2/3O2 sodium ion cathode. Journal of Power Sources, 2021, 508, 230324.	7.8	46
126	Rose-like N-doped Porous Carbon for Advanced Sodium Storage. Electrochimica Acta, 2017, 240, 24-30.	5.2	45

8

#	Article	IF	CITATIONS
127	Solid Solution Metal Chalcogenides for Sodium″on Batteries: The Recent Advances as Anodes. Small, 2021, 17, e2101058.	10.0	45
128	Exploration and Size Engineering from Natural Chalcopyrite to High-Performance Electrode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 6154-6165.	8.0	43
129	N,S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Materials, 2021, 42, 679-686.	18.0	43
130	Dual Functions of Potassium Antimony(III)â€Tartrate in Tuning Antimony/Carbon Composites for Longâ€Life Naâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1705744.	14.9	42
131	Natural Stibnite for Lithium-/Sodium-Ion Batteries: Carbon Dots Evoked High Initial Coulombic Efficiency. Nano-Micro Letters, 2022, 14, .	27.0	42
132	Chalcopyrite-Derived Na <i>_x</i> MO ₂ (M = Cu, Fe, Mn) Cathode: Tuning Impurities for Self-Doping. ACS Applied Materials & Interfaces, 2020, 12, 2432-2444.	8.0	41
133	Hollow-sphere ZnSe wrapped around carbon particles as a cycle-stable and high-rate anode material for reversible Li-ion batteries. New Journal of Chemistry, 2017, 41, 6693-6699.	2.8	40
134	Revealing the activation effects of high valence cobalt in CoMoO4 towards highly reversible conversion. Nano Energy, 2020, 68, 104333.	16.0	40
135	Copper-substituted NaxMO2 (MÂ=ÂFe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation. Chemical Engineering Journal, 2021, 406, 126830.	12.7	39
136	Boosting the ionic conductivity of PEO electrolytes by waste eggshell-derived fillers for high-performance solid lithium/sodium batteries. Materials Chemistry Frontiers, 2021, 5, 1315-1323.	5.9	38
137	Natural stibnite ore (Sb ₂ S ₃) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage. RSC Advances, 2019, 9, 15210-15216.	3.6	37
138	Electrochemically Alternating Voltage Induced Mn3O4/Graphite Powder Composite with Enhanced Electrochemical Performances for Lithium-ion Batteries. Electrochimica Acta, 2015, 155, 157-163.	5.2	36
139	Chemâ€Bonding and Physâ€Trapping Se Electrode for Longâ€Life Rechargeable Batteries. Advanced Functional Materials, 2019, 29, 1809014.	14.9	36
140	Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. Small, 2021, 17, e2102091.	10.0	36
141	Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction. Energy Storage Materials, 2022, 44, 145-155.	18.0	35
142	Nitrogen-doped Carbon Coated Na3V2(PO4)3 with Superior Sodium Storage Capability. Chemical Research in Chinese Universities, 2020, 36, 459-466.	2.6	34
143	Chemical-Mechanical Effects in Ni-Rich Cathode Materials. Chemistry of Materials, 2022, 34, 1509-1523.	6.7	34
144	Single Particle Electrochemistry of Collision. Small, 2019, 15, e1804908.	10.0	33

#	Article	IF	CITATIONS
145	Revealing dual capacitive mechanism of carbon cathode toward ultrafast quasi-solid-state lithium ion capacitors. Journal of Energy Chemistry, 2021, 60, 209-221.	12.9	33
146	Molecular-Level CuS@S Hybrid Nanosheets Constructed by Mineral Chemistry for Energy Storage Systems. ACS Applied Materials & Interfaces, 2018, 10, 43669-43681.	8.0	32
147	Functional carbon materials processed by NH3 plasma for advanced full-carbon sodium-ion capacitors. Chemical Engineering Journal, 2021, 420, 129647.	12.7	32
148	Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation. Science Bulletin, 2022, 67, 1589-1602.	9.0	31
149	Fe2O3 embedded in the nitrogen-doped carbon matrix with strong C-O-Fe oxygen-bridge bonds for enhanced sodium storages. Materials Chemistry and Physics, 2018, 216, 58-63.	4.0	29
150	Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. Chemical Communications, 2021, 57, 528-531.	4.1	29
151	A high-rate capability LiFePO ₄ /C cathode achieved by the modulation of the band structures. Journal of Materials Chemistry A, 2021, 9, 24686-24694.	10.3	28
152	Facile preparation of Sn hollow nanospheres anodes for lithium-ion batteries by galvanic replacement. Materials Letters, 2014, 128, 408-411.	2.6	27
153	Evaluating the influences of the sulfur content in precursors on the structure and sodium storage performances of carbon materials. Journal of Materials Chemistry A, 2018, 6, 11488-11495.	10.3	27
154	General Synthesis of Heteroatomâ€Đoped Hierarchical Carbon toward Excellent Electrochemical Energy Storage. Batteries and Supercaps, 2019, 2, 712-722.	4.7	27
155	Defect Rich Hierarchical Porous Carbon for High Power Supercapacitors. Frontiers in Chemistry, 2020, 8, 43.	3.6	27
156	Advanced Carbon Materials for Sodiumâ€lon Capacitors. Batteries and Supercaps, 2021, 4, 538-553.	4.7	27
157	Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor. Electrochimica Acta, 2015, 165, 198-205.	5.2	26
158	Bi ₂ MoO ₆ Microsphere with Double-Polyaniline Layers toward Ultrastable Lithium Energy Storage by Reinforced Structure. Inorganic Chemistry, 2019, 58, 6410-6421.	4.0	26
159	Rodâ€Like Sb ₂ MoO ₆ : Structure Evolution and Sodium Storage for Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800533.	8.6	26
160	Engineering metal-sulfides with cations-tunable metal-oxides electrocatalysts with promoted catalytic conversion for robust ions-storage capability. Energy Storage Materials, 2022, 45, 1183-1200.	18.0	26
161	Robust artificial interlayer for columnar sodium metal anode. Nano Energy, 2022, 97, 107203.	16.0	26
162	Manganeseâ€based layered oxide cathodes for sodium ion batteries. Nano Select, 2020, 1, 200-225.	3.7	25

#	Article	IF	CITATIONS
163	Nanosizing Pd on 3D porous carbon frameworks as effective catalysts for selective phenylacetylene hydrogenation. RSC Advances, 2017, 7, 15309-15314.	3.6	24
164	Electrochemically Modulated LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ Cathodes for Lithiumâ€ion Batteries. Small Methods, 2019, 3, 1900065.	8.6	24
165	High-rate sodium ion anodes assisted by N-doped carbon sheets. Sustainable Energy and Fuels, 2017, 1, 1130-1136.	4.9	23
166	Alternating voltage induced ordered anatase TiO2 nanopores: An electrochemical investigation of sodium storage. Journal of Power Sources, 2016, 336, 196-202.	7.8	22
167	Activated Flake Graphite Coated with Pyrolysis Carbon as Promising Anode for Lithium Storage. Electrochimica Acta, 2016, 196, 405-412.	5.2	22
168	Alternating Voltage Introduced [001]-Oriented α-MoO3 Microrods for High-Performance Sodium-ion Batteries. Electrochimica Acta, 2017, 245, 949-956.	5.2	22
169	Electrochemically intercalated intermediate induced exfoliation of few-layer MoS2 from molybdenite for long-life sodium storage. Science China Materials, 2021, 64, 115-127.	6.3	22
170	Porous Carbon Induced Anatase TiO2Nanodots/Carbon Composites for High-Performance Sodium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A3117-A3125.	2.9	21
171	Hollow carbon microbox from acetylacetone as anode material for sodium-ion batteries. Journal of Energy Chemistry, 2020, 51, 293-302.	12.9	20
172	Size-Tunable Natural Mineral-Molybdenite for Lithium-Ion Batteries Toward: Enhanced Storage Capacity and Quicken Ions Transferring. Frontiers in Chemistry, 2018, 6, 389.	3.6	19
173	Controllable fabrication of two-dimensional layered transition metal oxides through electrochemical exfoliation of non-van der Waals metals for rechargeable zinc-ion batteries. Chemical Engineering Journal, 2021, 408, 127247.	12.7	19
174	Ironâ€Based Layered Cathodes for Sodiumâ€ion Batteries. Batteries and Supercaps, 2021, 4, 1657-1679.	4.7	19
175	Carbon dots for ultrastable solidâ€ s tate batteries. SmartMat, 2022, 3, 286-297.	10.7	19
176	Suppressing the voltage failure by twinned heterostructure for high power sodium-ion capacitor. Chemical Engineering Journal, 2022, 446, 137070.	12.7	19
177	An Electrochemically Anodic Study of Anatase TiO2 Tuned through Carbon-Coating for High-performance Lithium-ion Battery. Electrochimica Acta, 2015, 164, 330-336.	5.2	18
178	TiO2 nanosheets anchoring on carbon nanotubes for fast sodium storage. Electrochimica Acta, 2018, 283, 1514-1524.	5.2	18
179	Li ₄ Ti ₅ O ₁₂ quantum dot decorated carbon frameworks from carbon dots for fast lithium ion storage. Materials Chemistry Frontiers, 2019, 3, 1761-1767.	5.9	18
180	Trace tea polyphenols enabling reversible dendrite-free zinc anode. Journal of Colloid and Interface Science, 2022, 624, 450-459.	9.4	18

#	Article	IF	CITATIONS
181	K _{<i>x</i>} C _{<i>y</i>} phase induced expanded interlayer in ultraâ€thin carbon toward full potassiumâ€ion capacitors. , 2022, 4, 1151-1168.		18
182	Alternating voltage induced porous Co ₃ O ₄ sheets: an exploration of its supercapacity properties. RSC Advances, 2015, 5, 177-183.	3.6	17
183	Evaluating the Storage Behavior of Superior Low-Cost Anode Material from Biomass for High-Rate Sodium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1431-A1437.	2.9	17
184	Nanoâ€confined Mo ₂ C Particles Embedded in a Porous Carbon Matrix: A Promising Anode for Ultraâ€stable Na Storage. ChemElectroChem, 2017, 4, 2669-2676.	3.4	17
185	Heterogeneous Interface Design for Enhanced Sodium Storage: Sb Quantum Dots Confined by Functional Carbon. Small Methods, 2021, 5, e2100188.	8.6	17
186	MnO ₂ Nanowires Anchored with Graphene Quantum Dots for Stable Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10940-10947.	5.1	17
187	Highly efficient re-cycle/generation of LiCoO2 cathode assisted by 2-naphthalenesulfonic acid. Journal of Hazardous Materials, 2021, 416, 126114.	12.4	16
188	Presodiation Strategies for the Promotion of Sodiumâ€Based Energy Storage Systems. Chemistry - A European Journal, 2021, 27, 16082-16092.	3.3	15
189	Evaluation of mechanical properties of multilayer graphyne-based structures as anode materials for lithium-ions batteries. European Physical Journal Plus, 2022, 137, .	2.6	14
190	Enabling Reversible Reaction by Uniform Distribution of Heterogeneous Intermediates on Defectâ€Rich SnSSe/C Layered Heterostructure for Ultralongâ€Cycling Sodium Storage. Small, 2022, 18, .	10.0	14
191	Constructing hierarchical sulfur-doped nitrogenous carbon nanosheets for sodium-ion storage. Nanotechnology, 2017, 28, 445604.	2.6	13
192	Electrochemically captured Zintl cluster-induced bismuthene for sodium-ion storage. Chemical Communications, 2021, 57, 2396-2399.	4.1	13
193	Channel regulation of TFC membrane with hydrophobic carbon dots in forward osmosis. Chinese Chemical Letters, 2021, 32, 2882-2886.	9.0	13
194	Synergistic effect of cross-linked carbon nanosheet frameworks and Sb on the enhancement of sodium storage performances. New Journal of Chemistry, 2017, 41, 13724-13731.	2.8	12
195	A graphite-modified natural stibnite mineral as a high-performance anode material for sodium-ion storage. RSC Advances, 2019, 9, 28953-28960.	3.6	12
196	Monocrystal Cu 3 Mo 2 O 9 Confined in Polyaniline Protective Layer: an Effective Strategy for Promoting Lithium Storage Stability. ChemElectroChem, 2019, 6, 1688-1695.	3.4	12
197	Zintl chemistry: Current status and future perspectives. Chemical Engineering Journal, 2022, 433, 133841.	12.7	11
198	Mitigating the Jahn-Teller distortion driven by the spin-orbit coupling of lithium manganate cathode. Journal of Energy Chemistry, 2022, 72, 379-387.	12.9	11

#	Article	IF	CITATIONS
199	Sodiumâ€lon Batteries: Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodiumâ€lon Batteries with Ultralong Cycle Life (Adv. Mater. 47/2015). Advanced Materials, 2015, 27, 7895-7895.	21.0	10
200	Influence of P doping on Na and K storage properties of N-rich carbon nanosheets. Materials Chemistry and Physics, 2019, 236, 121809.	4.0	10
201	Interfacial regulation of dendrite-free zinc anodes through a dynamic hydrophobic molecular membrane. Journal of Materials Chemistry A, 2021, 9, 14265-14269.	10.3	10
202	Bi-doped carbon dots for a stable lithium metal anode. Chemical Communications, 2022, 58, 6449-6452.	4.1	10
203	Carbon skeleton confined Sb chalcogenides nanodots for stable sodium storage. Carbon, 2022, 197, 341-349.	10.3	10
204	Perovskite ABO ₃ â€Type MOFâ€Derived Carbon Decorated Fe ₃ O ₄ with Enhanced Lithium Storage Performance. ChemElectroChem, 2018, 5, 3426-3436.	3.4	9
205	Liquid Alloying Na–K for Sodium Metal Anodes. Journal of Physical Chemistry Letters, 2021, 12, 9321-9327.	4.6	9
206	Alternating voltage induced electrochemical synthesis of three-dimensionalization copper oxide for lithium-ion battery application. Chemical Physics Letters, 2016, 653, 30-34.	2.6	8
207	Electronic Effect and Regiochemistry of Substitution in Pre-sodiation Chemistry. Journal of Physical Chemistry Letters, 2021, 12, 11968-11979.	4.6	7
208	Effect of Short Carbon Fibers and Carbon Nanotubes Dispersed by Utilizing Hollow Glass Beads as Carriers on the Tensile and Curing Properties of Epoxy Resin. Polymer-Plastics Technology and Engineering, 2013, 52, 1519-1526.	1.9	6
209	Carbon Dotsâ€Regulated Pomegranate‣ike Metal Oxide Composites: From Growth Mechanism to Lithium Storage. Small Methods, 2022, 6, e2200245.	8.6	5
210	Phase-Controllable Cobalt Phosphides Induced through Hydrogel for Higher Lithium Storages. Inorganic Chemistry, 2020, 59, 6471-6480.	4.0	4
211	Molecularly Compensated Preâ€Metallation Strategy for Metalâ€ion Batteries and Capacitors. Angewandte Chemie, 2021, 133, 17207-17216.	2.0	4
212	Electrochemical Zintl Cluster Bi22â^' induced chemically bonded bismuth / graphene oxide composite for sodium-ion batteries. Electrochimica Acta, 2022, 413, 140174.	5.2	4
213	Energy Storage: Largeâ€Area Carbon Nanosheets Doped with Phosphorus: A Highâ€Performance Anode Material for Sodiumâ€Ion Batteries (Adv. Sci. 1/2017). Advanced Science, 2017, 4, .	11.2	3
214	Coupling regeneration strategy of lithium-ion electrode materials turned with naphthalenedisulfonic acid. Waste Management, 2021, 136, 1-10.	7.4	3
215	Electrochemically Engineering Antimony Interspersed on Graphene toward Advanced Sodium-Storage Anodes. Inorganic Chemistry, 2021, 60, 12526-12535.	4.0	2
216	Nanomaterials for electrochemical energy storage. Frontiers of Nanoscience, 2021, 18, 421-484.	0.6	2