
## Noriyuki Matsuda, æ¾ç"°æ†ä¼

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1532973/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Molecular mechanisms and physiological functions of mitophagy. EMBO Journal, 2021, 40, e104705.                                                                                                                        | 7.8 | 553       |
| 2  | Cleaved PGAM5 dephosphorylates nuclear serine/arginine-rich proteins during mitophagy. Biochimica<br>Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119045.                                                 | 4.1 | 2         |
| 3  | Loss of peptide: <i>N</i> -glycanase causes proteasome dysfunction mediated by a sugar-recognizing ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .     | 7.1 | 23        |
| 4  | Mammalian BCAS3 and C16orf70 associate with the phagophore assembly site in response to selective and non-selective autophagy. Autophagy, 2021, 17, 2011-2036.                                                         | 9.1 | 6         |
| 5  | Unfolding is the driving force for mitochondrial import and degradation of the Parkinson's disease-related protein DJ-1. Journal of Cell Science, 2021, 134, .                                                         | 2.0 | 3         |
| 6  | Two sides of a coin: Physiological significance and molecular mechanisms for damage-induced mitochondrial localization of PINK1 and Parkin. Neuroscience Research, 2020, 159, 16-24.                                   | 1.9 | 8         |
| 7  | Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy. Journal of Cell<br>Biology, 2020, 219, .                                                                                           | 5.2 | 114       |
| 8  | Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL.<br>Journal of Biological Chemistry, 2019, 294, 10300-10314.                                                       | 3.4 | 79        |
| 9  | Parkinâ€mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes. EMBO<br>Reports, 2019, 20, e47728.                                                                                        | 4.5 | 35        |
| 10 | Cleaved PGAM5 is released from mitochondria depending on proteasome-mediated rupture of the outer mitochondrial membrane during mitophagy. Journal of Biochemistry, 2019, 165, 19-25.                                  | 1.7 | 19        |
| 11 | Endosomal Rab cycles regulate Parkin-mediated mitophagy. ELife, 2018, 7, .                                                                                                                                             | 6.0 | 113       |
| 12 | Discovery and Optimization of Inhibitors of the Parkinson's Disease Associated Protein DJ-1. ACS<br>Chemical Biology, 2018, 13, 2783-2793.                                                                             | 3.4 | 27        |
| 13 | Structural insights into ubiquitin phosphorylation by PINK1. Scientific Reports, 2018, 8, 10382.                                                                                                                       | 3.3 | 35        |
| 14 | Parkinson's disease-related DJ-1 functions in thiol quality control against aldehyde attack in vitro.<br>Scientific Reports, 2017, 7, 12816.                                                                           | 3.3 | 41        |
| 15 | Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30. Nature Structural and Molecular Biology, 2017, 24, 911-919.                                                                       | 8.2 | 61        |
| 16 | Ubiquitination of exposed glycoproteins by SCF <sup>FBXO27</sup> directs damaged lysosomes for<br>autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,<br>8574-8579. | 7.1 | 96        |
| 17 | The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.<br>EMBO Reports, 2016, 17, 300-316.                                                                                    | 4.5 | 197       |
| 18 | Unexpected mitochondrial matrix localization of Parkinson's diseaseâ€related <scp>DJ</scp> â€1 mutants<br>but not wildâ€type <scp>DJ</scp> â€1. Genes To Cells, 2016, 21, 772-788.                                     | 1.2 | 21        |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death<br>Independently of Mitochondrial Autophagy. Journal of Biological Chemistry, 2016, 291, 16162-16174.                                 | 3.4  | 23        |
| 20 | Phospho-ubiquitin: upending the PINK–Parkin–ubiquitin cascade. Journal of Biochemistry, 2016, 159,<br>379-385.                                                                                                                           | 1.7  | 53        |
| 21 | Unconventional PINK1 localization mechanism to the outer membrane of depolarized mitochondria drives Parkin recruitment. Journal of Cell Science, 2015, 128, 964-78.                                                                     | 2.0  | 103       |
| 22 | Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged<br>mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2791-2796.                                      | 4.1  | 35        |
| 23 | The PARK2/Parkin receptor on damaged mitochondria revisited—uncovering the role of phosphorylated ubiquitin chains. Autophagy, 2015, 11, 1700-1701.                                                                                      | 9.1  | 6         |
| 24 | Phosphorylated ubiquitin chain is the genuine Parkin receptor. Journal of Cell Biology, 2015, 209, 111-128.                                                                                                                              | 5.2  | 217       |
| 25 | Tagged tags engage disposal. Nature, 2015, 524, 294-295.                                                                                                                                                                                 | 27.8 | 6         |
| 26 | Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. Journal of Biological Chemistry, 2015, 290, 25199-25211.                                                                                     | 3.4  | 50        |
| 27 | Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510, 162-166.                                                                                                                                                     | 27.8 | 1,185     |
| 28 | Proteostasis and neurodegeneration: The roles of proteasomal degradation and autophagy.<br>Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 197-204.                                                                 | 4.1  | 153       |
| 29 | Parkin-catalyzed Ubiquitin-Ester Transfer Is Triggered by PINK1-dependent Phosphorylation. Journal of<br>Biological Chemistry, 2013, 288, 22019-22032.                                                                                   | 3.4  | 173       |
| 30 | A Dimeric PINK1-containing Complex on Depolarized Mitochondria Stimulates Parkin Recruitment.<br>Journal of Biological Chemistry, 2013, 288, 36372-36384.                                                                                | 3.4  | 168       |
| 31 | Different dynamic movements of wildâ€type and pathogenic <scp>VCP</scp> s and their cofactors to<br>damaged mitochondria in a <scp>P</scp> arkinâ€mediated mitochondrial quality control system. Genes<br>To Cells, 2013, 18, 1131-1143. | 1.2  | 35        |
| 32 | The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons. Genes To Cells, 2013, 18, 672-681.                                                     | 1.2  | 38        |
| 33 | PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nature Communications, 2012, 3, 1016.                                                                         | 12.8 | 465       |
| 34 | Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase. Biochemical and<br>Biophysical Research Communications, 2012, 428, 197-202.                                                                            | 2.1  | 65        |
| 35 | Parkin Mediates Apparent E2-Independent Monoubiquitination In Vitro and Contains an Intrinsic<br>Activity That Catalyzes Polyubiquitination. PLoS ONE, 2011, 6, e19720.                                                                  | 2.5  | 40        |
| 36 | p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes To<br>Cells. 2010. 15. 887-900.                                                                                                          | 1.2  | 345       |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology, 2010, 189, 211-221.                                                                               | 5.2  | 1,600     |
| 38 | Uncovering the roles of PINK1 and Parkin in mitophagy. Autophagy, 2010, 6, 952-954.                                                                                                                                                                            | 9.1  | 41        |
| 39 | Does Impairment of the Ubiquitin-Proteasome System or the Autophagy-Lysosome Pathway Predispose<br>Individuals to Neurodegenerative Disorders such as Parkinson's Disease?. Journal of Alzheimer's<br>Disease, 2010, 19, 1-9.                                  | 2.6  | 89        |
| 40 | MG53 nucleates assembly of cell membrane repair machinery. Nature Cell Biology, 2009, 11, 56-64.                                                                                                                                                               | 10.3 | 396       |
| 41 | Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3<br>ligase activity. Nature Structural and Molecular Biology, 2007, 14, 167-168.                                                                              | 8.2  | 105       |
| 42 | Diverse Effects of Pathogenic Mutations of Parkin That Catalyze Multiple Monoubiquitylation in<br>Vitro. Journal of Biological Chemistry, 2006, 281, 3204-3209.                                                                                                | 3.4  | 166       |
| 43 | UV-Induced Ubiquitylation of XPC Protein Mediated by UV-DDB-Ubiquitin Ligase Complex. Cell, 2005, 121, 387-400.                                                                                                                                                | 28.9 | 517       |
| 44 | DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. DNA Repair, 2005, 4, 537-545.                                                                                                     | 2.8  | 65        |
| 45 | A palmitoylated RING finger ubiquitin ligase and its homologue in the brain membranes. Journal of<br>Neurochemistry, 2003, 86, 749-762.                                                                                                                        | 3.9  | 25        |
| 46 | Ubiquitin Ligase Activities of Bombyx mori Nucleopolyhedrovirus RING Finger Proteins. Journal of<br>Virology, 2003, 77, 923-930.                                                                                                                               | 3.4  | 69        |
| 47 | EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin<br>ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating<br>enzyme, OsUBC5b. Plant Journal, 2002, 30, 447-455. | 5.7  | 98        |
| 48 | Modes of interaction between the Arabidopsis Rab protein, Ara4, and its putative regulator molecules revealed by a yeast expression system. Plant Journal, 2000, 21, 341-349.                                                                                  | 5.7  | 21        |
| 49 | Overexpression of PRA2, a Rab/Yipt-family Small GTPase from Pea Pisum sativum, Aggravates the Growth Defect of Yeast ypt Mutants Cell Structure and Function, 2000, 25, 11-20.                                                                                 | 1.1  | 9         |
| 50 | RMA1 an Arabidopsis thaliana Gene Whose cDNA Suppresses the Yeast secl5 Mutation, Encodes a Novel<br>Protein with a RING Finger Motif and a Membrane Anchor. Plant and Cell Physiology, 1998, 39, 545-554.                                                     | 3.1  | 27        |