Irena Creed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1532591/publications.pdf

Version: 2024-02-01

164 9,784 papers citations

43 h-index 91 g-index

166 all docs 166 docs citations 166 times ranked 10314 citing authors

#	Article	IF	CITATIONS
1	Vulnerable Waters are Essential to Watershed Resilience. Ecosystems, 2023, 26, 1-28.	3.4	21
2	The alarming state of freshwater biodiversity in Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2022, 79, 352-365.	1.4	25
3	Are Northern Lakes in Relatively Intact Temperate Forests Showing Signs of Increasing Phytoplankton Biomass?. Ecosystems, 2022, 25, 727-755.	3.4	9
4	Paleolimnological evidence reveals climate-related preeminence of cyanobacteria in a temperate meromictic lake. Canadian Journal of Fisheries and Aquatic Sciences, 2022, 79, 558-565.	1.4	6
5	Multiâ€decadal changes in phytoplankton biomass in northern temperate lakes as seen through the prism of landscape properties. Global Change Biology, 2022, 28, 2272-2285.	9.5	5
6	The Essential Role of Wetland Restoration Practitioners in the Science-Policy-Practice Process. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	4
7	A framework to identify priority wetland habitats and movement corridors for urban amphibian conservation. Ecological Solutions and Evidence, 2022, 3, .	2.0	1
8	Harmonizing science and management options to reduce risks of cyanobacteria. Harmful Algae, 2022, 116, 102264.	4.8	17
9	Biomass, community composition and N:P recycling ratios of zooplankton in northern highâ€latitude lakes with contrasting levels of N deposition and dissolved organic carbon. Freshwater Biology, 2022, 67, 1508-1520.	2.4	7
10	Long-term stream chemistry response to harvesting in a northern hardwood forest watershed experiencing environmental change. Forest Ecology and Management, 2022, 519, 120345.	3.2	6
11	Lake browning may fuel phytoplankton biomass and trigger shifts in phytoplankton communities in temperate lakes. Aquatic Sciences, 2021, 83, 1.	1.5	33
12	Trade-offs Between Light and Nutrient Availability Across Gradients of Dissolved Organic Carbon Lead to Spatially and Temporally Variable Responses of Lake Phytoplankton Biomass to Browning. Ecosystems, 2021, 24, 1837-1852.	3.4	16
13	Performance and competitiveness of red vs. green phenotypes of a cyanobacterium grown under artificial lake browning. Algae, 2021, 36, 195-206.	2.3	7
14	Lowered nutritional quality of plankton caused by global environmental changes. Global Change Biology, 2021, 27, 6294-6306.	9.5	26
15	Optimization of Landsat Chl-a Retrieval Algorithms in Freshwater Lakes through Classification of Optical Water Types. Remote Sensing, 2021, 13, 4607.	4.0	3
16	Uncertainty analysis of the performance of a management system for achieving phosphorus load reduction to surface waters. Journal of Environmental Management, 2020, 276, 111217.	7.8	6
17	Homogenization of the terrestrial water cycle. Nature Geoscience, 2020, 13, 656-658.	12.9	242
18	Enhanced Transboundary Governance Capacity Needed to Achieve Policy Goals for Harmful Algal Blooms. Handbook of Environmental Chemistry, 2020, , 251-265.	0.4	1

#	Article	IF	CITATIONS
19	Assessing the potential health risk of cyanobacteria and cyanotoxins in Lake Naivasha, Kenya. Hydrobiologia, 2020, 847, 1041-1056.	2.0	5
20	Differential Drawdown of Ammonium, Nitrate, and Urea by Freshwater Chlorophytes and Cyanobacteria 1. Journal of Phycology, 2020, 56, 458-468.	2.3	6
21	Advancing ecohydrology in the 21st century: A convergence of opportunities. Ecohydrology, 2020, 13, e2208.	2.4	34
22	Does browning affect the identity of limiting nutrients in lakes?. Aquatic Sciences, 2020, 82, 1.	1.5	20
23	Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes. Aquatic Sciences, 2020, 82, 1.	1.5	15
24	Forest-Water Interactions Under Global Change. Ecological Studies, 2020, , 589-624.	1.2	20
25	Global changes may be promoting a rise in select cyanobacteria in nutrientâ€poor northern lakes. Global Change Biology, 2020, 26, 4966-4987.	9.5	45
26	Northern forest winters have lost cold, snowy conditions that are important for ecosystems and human communities. Ecological Applications, 2019, 29, e01974.	3.8	51
27	Managing Forests for Both Downstream and Downwind Water. Frontiers in Forests and Global Change, 2019, 2, .	2.3	30
28	Browning reduces the availability—but not the transfer—of essential fatty acids in temperate lakes. Freshwater Biology, 2019, 64, 2107-2119.	2.4	22
29	Meteorological and Nutrient Conditions Influence Microcystin Congeners in Freshwaters. Toxins, 2019, 11, 620.	3.4	18
30	Climate-influenced catchment hydrology overrides forest management effects on stream benthic macroinvertebrates in a northern hardwood forest. Forest Ecology and Management, 2019, 452, 117540.	3.2	2
31	Managing risks to Canada's boreal zone: transdisciplinary thinking in pursuit of sustainability1. Environmental Reviews, 2019, 27, 407-418.	4.5	15
32	Demand for provisioning ecosystem services as a driver of change in the Canadian boreal zone ¹ . Environmental Reviews, 2019, 27, 166-184.	4.5	21
33	Safeguarding Wetlands and Their Connections within Wetlandscapes to Improve Conservation Outcomes for Threatened Amphibian Species. Journal of the American Water Resources Association, 2019, 55, 641-656.	2.4	7
34	Does Wetland Location Matter When Managing Wetlands for Watershedâ€Scale Flood and Drought Resilience?. Journal of the American Water Resources Association, 2019, 55, 529-542.	2.4	38
35	Demographics and social values as drivers of change in the Canadian boreal zone1. Environmental Reviews, 2019, 27, 377-392.	4.5	8
36	Winter Weather Whiplash: Impacts of Meteorological Events Misaligned With Natural and Human Systems in Seasonally Snowâ€Covered Regions. Earth's Future, 2019, 7, 1434-1450.	6.3	43

#	Article	IF	CITATIONS
37	Incomplete recovery of plant diversity in restored prairie wetlands on agricultural landscapes. Restoration Ecology, 2019, 27, 520-530.	2.9	8
38	Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 2019, 94, 849-873.	10.4	1,766
39	Cyanobacteria biomass in shallow eutrophic lakes is linked to the presence of iron-binding ligands. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1728-1739.	1.4	4
40	Atmospheric change as a driver of change in the Canadian boreal zone $<$ sup $>$ 1 $<$ /sup $>$. Environmental Reviews, 2019, 27, 346-376.	4.5	18
41	Alternative scenarios for the future of the Canadian boreal zone1. Environmental Reviews, 2019, 27, 185-199.	4.5	12
42	Groundwaters at Risk: Wetland Loss Changes Sources, Lengthens Pathways, and Decelerates Rejuvenation of Groundwater Resources. Journal of the American Water Resources Association, 2019, 55, 294-306.	2.4	18
43	Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover. Journal of Hydrology, 2018, 557, 805-825.	5.4	25
44	Global changeâ€driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Global Change Biology, 2018, 24, 3692-3714.	9.5	229
45	Landscape consequences of aggregation rules for functional equivalence in compensatory mitigation programs. Conservation Biology, 2018, 32, 694-705.	4.7	11
46	Recent Synchronous Declines in DIN:TP in Swedish Lakes. Global Biogeochemical Cycles, 2018, 32, 208-225.	4.9	32
47	Comparative effects of ammonium, nitrate and urea on growth and photosynthetic efficiency of three bloomâ€forming cyanobacteria. Freshwater Biology, 2018, 63, 626-638.	2.4	31
48	Estimating rates of wetland loss using power-law functions. Wetlands, 2018, 38, 109-120.	1.5	24
49	Maintaining the Portfolio of Wetland Functions on Landscapes: A Rapid Evaluation Tool for Estimating Wetland Functions and Values in Alberta, Canada. , 2018, , 189-206.		2
50	Solute evidence for hydrological connectivity of geographically isolated wetlands. Land Degradation and Development, 2018, 29, 3954-3962.	3.9	26
51	Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes. Ecological Modelling, 2018, 384, 119-127.	2.5	45
52	Assessing the ecological sustainability of a forest management system using the ISO Bowtie Risk Management Assessment Tool. Forestry Chronicle, 2018, 94, 25-34.	0.6	15
53	Catchmentâ€Scale Shifts in the Magnitude and Partitioning of Carbon Export in Response to Changing Hydrologic Connectivity in a Northern Hardwood Forest. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2337-2352.	3.0	22
54	The science-policy interface of risk-based freshwater and marine management systems: From concepts to practical tools. Journal of Environmental Management, 2018, 226, 340-346.	7.8	24

#	Article	IF	Citations
55	Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sensing, 2018, 10, 797.	4.0	150
56	Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 2017, 43, 51-61.	7.8	660
57	Nitrous Oxide and Dinitrogen: The Missing Flux in Nitrogen Budgets of Forested Catchments?. Environmental Science & Environmental Science & Environmen	10.0	11
58	Primary weathering rates, water transit times, and concentrationâ€discharge relations: A theoretical analysis for the critical zone. Water Resources Research, 2017, 53, 942-960.	4.2	73
59	Enhancing protection for vulnerable waters. Nature Geoscience, 2017, 10, 809-815.	12.9	141
60	Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 2017, 108, 489-497.	3.6	217
61	Integrating geographically isolated wetlands into land management decisions. Frontiers in Ecology and the Environment, 2017, 15, 319-327.	4.0	92
62	Automated Techniques to Identify Lost and Restorable Wetlands in the Prairie Pothole Region. Wetlands, 2017, 37, 1079-1091.	1.5	21
63	Quantifying hydrologic connectivity of wetlands to surface water systems. Hydrology and Earth System Sciences, 2017, 21, 1791-1808.	4.9	87
64	Automated Quantification of Surface Water Inundation in Wetlands Using Optical Satellite Imagery. Remote Sensing, 2017, 9, 807.	4.0	91
65	Managing Forests for Water in the Anthropoceneâ€"The Best Kept Secret Services of Forest Ecosystems. Forests, 2016, 7, 60.	2.1	24
66	Summer storms trigger soil N ₂ O efflux episodes in forested catchments. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 95-108.	3.0	17
67	Iron and ironâ€binding ligands as cofactors that limit cyanobacterial biomass across a lake trophic gradient. Freshwater Biology, 2016, 61, 146-157.	2.4	23
68	Formal Integration of Science and Management Systems Needed to Achieve Thriving and Prosperous Great Lakes. BioScience, 2016, 66, 408-418.	4.9	20
69	Catchment influence on nitrate and dissolved organic matter in Alaskan streams across a latitudinal gradient. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 350-369.	3.0	46
70	Forest soil CO2 efflux models improved by incorporating topographic controls on carbon content and sorption capacity of soils. Biogeochemistry, 2016, 129, 307-323.	3.5	5
71	Snowâ€covered soils produce N ₂ O that is lost from forested catchments. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2356-2368.	3.0	6
72	Hillslope permeability architecture controls on subsurface transit time distribution and flow paths. Journal of Hydrology, 2016, 543, 17-30.	5.4	47

#	Article	IF	Citations
73	New mapping techniques to estimate the preferential loss of small wetlands on prairie landscapes. Hydrological Processes, 2016, 30, 396-409.	2.6	56
74	Do geographically isolated wetlands influence landscape functions?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1978-1986.	7.1	297
75	Community engagement is critical to achieve a "thriving and prosperous―future for the Great Lakes–St. Lawrence River basin. Journal of Great Lakes Research, 2015, 41, 188-191.	1.9	10
76	Out of control: How we failed to adapt and suffered the consequences. Journal of Great Lakes Research, 2015, 41, 20-29.	1.9	12
77	Trying hard to adapt to a chaotic world: How complex challenges overwhelmed best intentions. Journal of Great Lakes Research, 2015, 41, 139-149.	1.9	6
78	Thriving and prosperous: How we rallied to confront collective challenges. Journal of Great Lakes Research, 2015, 41, 161-170.	1.9	5
79	Living on the Edge: How we converted challenges into profitable opportunities. Journal of Great Lakes Research, 2015, 41, 150-160.	1.9	5
80	Climate warming causes intensification of the hydrological cycle, resulting in changes to the vernal and autumnal windows in a northern temperate forest. Hydrological Processes, 2015, 29, 3519-3534.	2.6	47
81	Geographically Isolated Wetlands are Important Biogeochemical Reactors on the Landscape. BioScience, 2015, 65, 408-418.	4.9	163
82	Impacts and prognosis of natural resource development on water and wetlands in Canada's boreal zone. Environmental Reviews, 2015, 23, 78-131.	4.5	64
83	The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1272-1285.	1.4	242
84	Scenario analysis: An integrative and effective method for bridging disciplines and achieving a thriving Great Lakes-St. Lawrence River basin. Journal of Great Lakes Research, 2015, 41, 12-19.	1.9	16
85	The Great Lakes Futures Project: Principles and policy recommendations for making the lakes great. Journal of Great Lakes Research, 2015, 41, 171-179.	1.9	19
86	Critical forces defining alternative futures for the Great Lakes–St. Lawrence River basin. Journal of Great Lakes Research, 2015, 41, 131-138.	1.9	22
87	Soil denitrification fluxes from three northeastern North American forests across a range of nitrogen deposition. Oecologia, 2015, 177, 17-27.	2.0	54
88	Potential Vulnerability of Deep Carbon Deposits of Forested Swamps to Drought. Soil Science Society of America Journal, 2014, 78, 1097-1107.	2.2	10
89	Changing forest water yields in response to climate warming: results from longâ€term experimental watershed sites across North America. Global Change Biology, 2014, 20, 3191-3208.	9.5	147
90	Evidence for ironâ€regulated cyanobacterial predominance in oligotrophic lakes. Freshwater Biology, 2014, 59, 679-691.	2.4	38

#	Article	IF	Citations
91	Suitability of a cytotoxicity assay for detection of potentially harmful compounds produced by freshwater bloom-forming algae. Harmful Algae, 2014, 31, 177-187.	4.8	11
92	A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. Freshwater Biology, 2014, 59, 1323-1340.	2.4	129
93	Tracking wetland loss to improve evidence-based wetland policy learning and decision making. Wetlands Ecology and Management, 2014, 22, 235-245.	1.5	48
94	The influence of iron, siderophores and refractory <scp>DOM</scp> on cyanobacterial biomass in oligotrophic lakes. Freshwater Biology, 2014, 59, 1423-1436.	2.4	22
95	Regionalâ€scale mapping of groundwater discharge zones using thermal satellite imagery. Hydrological Processes, 2014, 28, 5662-5673.	2.6	15
96	Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range. Ecological Modelling, 2014, 293, 81-90.	2.5	16
97	Searching for similarity in topographic controls on carbon, nitrogen and phosphorus export from forested headwater catchments. Hydrological Processes, 2014, 28, 3201-3216.	2.6	34
98	Topographically regulated traps of dissolved organic carbon create hotspots of soil carbon dioxide efflux in forests. Biogeochemistry, 2013, 112, 149-164.	3.5	25
99	Impacts and prognosis of natural resource development on aquatic biodiversity in Canada's boreal zone. Environmental Reviews, 2013, 21, 227-259.	4.5	47
100	Nutrient export from catchments on forested landscapes reveals complex nonstationary and stationary climate signals. Water Resources Research, 2013, 49, 3863-3880.	4.2	23
101	Hydrologic profiling for greenhouse gas effluxes from natural grasslands in the prairie pothole region of Canada. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 680-697.	3.0	18
102	Russian nesting dolls effect – Using wavelet analysis to reveal nonâ€stationary and nested stationary signals in water yield from catchments on a northern forested landscape. Hydrological Processes, 2013, 27, 669-686.	2.6	19
103	Ecosystem Processes and Human Influences Regulate Streamflow Response to Climate Change at Long-Term Ecological Research Sites. BioScience, 2012, 62, 390-404.	4.9	149
104	The effect of seasonal drying on sulphate dynamics in streams across southeastern Canada and the northeastern USA. Biogeochemistry, 2012, 111, 393-409.	3.5	28
105	Defining protected area boundaries based on vascular-plant species richness using hydrological information derived from archived satellite imagery. Biological Conservation, 2012, 147, 143-152.	4.1	11
106	Sinking of Heterosigma akashiwo results in increased toxicity of this harmful algal bloom species. Harmful Algae, 2012, 13, 95-104.	4.8	14
107	The accuracy of land cover-based wetland assessments is influenced by landscape extent. Landscape Ecology, 2012, 27, 1321-1335.	4.2	44
108	Picea rubens growth at high versus low elevations in the Great Smoky Mountains National Park: evaluation by systems modeling. Canadian Journal of Forest Research, 2011, 41, 945-962.	1.7	8

#	Article	IF	CITATIONS
109	A topographic template for estimating soil carbon pools in forested catchments. Geoderma, 2011, 160, 457-467.	5.1	39
110	Topographically based spatially averaging of SAR data improves performance of soil moisture models. Remote Sensing of Environment, 2011, 115, 3507-3516.	11.0	10
111	Observing Changes in Riparian Buffer Strip Soil Properties Related to Land Use Activities in the River Njoro Watershed, Kenya. Water, Air, and Soil Pollution, 2011, 218, 587-601.	2.4	21
112	Hydrological principles for sustainable management of forest ecosystems. Hydrological Processes, 2011, 25, 2152-2160.	2.6	24
113	Bird's-Eye View of Forest Hydrology: Novel Approaches Using Remote Sensing Techniques. Ecological Studies, 2011, , 45-68.	1.2	5
114	Digital Terrain Analysis Approaches for Tracking Hydrological and Biogeochemical Pathways and Processes in Forested Landscapes. Ecological Studies, 2011, , 69-100.	1.2	17
115	Comparison of the Performance of Statistical Models that Predict Soil Respiration from Forests. Soil Science Society of America Journal, 2009, 73, 1157-1167.	2.2	23
116	Advances in Canadian Forest Hydrology, 2003-2007. Canadian Water Resources Journal, 2009, 34, 113-126.	1.2	19
117	Detecting and Downscaling Wet Areas on Boreal Landscapes. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 179-183.	3.1	15
118	A stochastic model for generating disturbance patterns within landscapes. Computers and Geosciences, 2009, 35, 1451-1459.	4.2	12
119	Hydrologic effects of a changing forested landscape—challenges for the hydrological sciences. Hydrological Processes, 2009, 23, 2699-2704.	2.6	33
120	Distributed topographic indicators for predicting nitrogen export from headwater catchments. Water Resources Research, 2009, 45, .	4.2	48
121	Mapping hydrologically sensitive areas on the Boreal Plain: a multitemporal analysis of ERS synthetic aperture radar data. International Journal of Remote Sensing, 2009, 30, 2619-2635.	2.9	14
122	Modeling dissolved organic carbon mass balances for lakes of the Muskoka River Watershed. Hydrology Research, 2009, 40, 273-290.	2.7	11
123	Characterizing hydrodynamics on boreal landscapes using archived synthetic aperture radar imagery. Hydrological Processes, 2008, 22, 1687-1699.	2.6	43
124	Interannual variability in trophic status of shallow lakes on the Boreal Plain: Is there a climate signal?. Water Resources Research, 2008, 44, .	4.2	13
125	Spatial heterogeneity in trophic status of shallow lakes on the Boreal Plain: Influence of hydrologic setting. Water Resources Research, 2008, 44, .	4.2	12
126	Predicting export of dissolved organic carbon from forested catchments in glaciated landscapes with shallow soils. Global Biogeochemical Cycles, 2008, 22, .	4.9	108

#	Article	IF	Citations
127	Incorporating hydrologic dynamics into buffer strip design on the sub-humid Boreal Plain of Alberta. Forest Ecology and Management, 2008, 256, 1984-1994.	3.2	24
128	Controls on the heterogeneity of soil respiration in a tolerant hardwood forest. Journal of Geophysical Research, 2008, 113 , .	3.3	55
129	Sensitivity of catchmentâ€aggregated estimates of soil carbon dioxide efflux to topography under different climatic conditions. Journal of Geophysical Research, 2008, 113, .	3.3	21
130	Frequent regime shifts in trophic states in shallow lakes on the Boreal Plain: Alternative "unstable" states?. Limnology and Oceanography, 2007, 52, 2002-2012.	3.1	93
131	Scaleâ€dependence of natural variability of flow regimes in a forested landscape. Water Resources Research, 2007, 43, .	4.2	26
132	Understanding variation in trophic status of lakes on the Boreal Plain: A 20Âyear retrospective using Landsat TM imagery. Remote Sensing of Environment, 2007, 109, 127-141.	11.0	60
133	Towards a universal lidar canopy height indicator. Canadian Journal of Remote Sensing, 2006, 32, 139-152.	2.4	72
134	Distinguishing actual and artefact depressions in digital elevation data. Computers and Geosciences, 2006, 32, 1192-1204.	4.2	81
135	Biodegradability of dissolved organic matter extracted from a chronosequence of forest-floor materials. Journal of Plant Nutrition and Soil Science, 2006, 169, 101-107.	1.9	25
136	Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with topographic position in harvested and unharvested portions of an aspen-dominated catchment in the Boreal Plain. Canadian Journal of Forest Research, 2006, 36, 2090-2103.	1.7	19
137	Sensitivity of Digital Landscapes to Artifact Depressions in Remotely-sensed DEMs. Photogrammetric Engineering and Remote Sensing, 2005, 71, 1029-1036.	0.6	43
138	Advances in Canadian forest hydrology, 1999-2003. Hydrological Processes, 2005, 19, 169-200.	2.6	41
139	Controls on runoff from a partially harvested aspen-forested headwater catchment, Boreal Plain, Canada. Hydrological Processes, 2005, 19, 3-25.	2.6	112
140	Removal of artifact depressions from digital elevation models: towards a minimum impact approach. Hydrological Processes, 2005, 19, 3113-3126.	2.6	138
141	A framework for broad-scale classification of hydrologic response units on the Boreal Plain: is topography the last thing to consider?. Hydrological Processes, 2005, 19, 1705-1714.	2.6	270
142	Heterogeneity in soil nitrogen within first-order forested catchments at the Turkey Lakes Watershed. Canadian Journal of Forest Research, 2005, 35, 797-805.	1.7	14
143	Vegetation class dependent errors in lidar ground elevation and canopy height estimates in a boreal wetland environment. Canadian Journal of Remote Sensing, 2005, 31, 191-206.	2.4	150
144	Determining Spatially-Distributed Annual Water Balances for Ungauged Locations on Shikoku Island, Japan: A Comparison of Two Interpolators/Détermination de Bilans Hydriques Spatialisés pour des Sites Non-Jaugés de L'Īle de Shikoku, au Japon: Comparaison de Deux Interpolateurs. Hydrological Sciences Journal, 2005, 50, .	2.6	14

#	Article	IF	Citations
145	Soil, surface water and ground water phosphorus relationships in a partially harvested Boreal Plain aspen catchment. Forest Ecology and Management, 2005, 206, 315-329.	3.2	35
146	Is coarse woody debris a net sink or source of nitrogen in the red spruce \hat{A} – Fraser fir forest of the southern Appalachians, U.S.A.?. Canadian Journal of Forest Research, 2004, 34, 716-727.	1.7	30
147	Exploring Interactions between Pollutant Emissions and Climatic Variability in Growth of Red Spruce in the Great Smoky Mountains National Park. Water, Air, and Soil Pollution, 2004, 159, 225-248.	2.4	19
148	Drainage basin morphometrics for depressional landscapes. Water Resources Research, 2004, 40, .	4.2	32
149	A comparison of techniques for measuring density and concentrations of carbon and nitrogen in coarse woody debris at different stages of decay. Canadian Journal of Forest Research, 2004, 34, 744-753.	1.7	44
150	Cryptic wetlands: integrating hidden wetlands in regression models of the export of dissolved organic carbon from forested landscapes. Hydrological Processes, 2003, 17, 3629-3648.	2.6	174
151	Variation in overstory nitrogen uptake in a small, high-elevation southern Appalachian spruce-fir watershed. Canadian Journal of Forest Research, 2002, 32, 1741-1752.	1.7	26
152	Title is missing!. Water, Air and Soil Pollution, 2002, 2, 81-102.	0.8	31
153	Is There Synchronicity in Nitrogen Input and Output Fluxes at the Noland Divide Watershed, a Small N-Saturated Forested Catchment in the Great Smoky Mountains National Park?. Scientific World Journal, The, 2001, 1, 480-492.	2.1	25
154	Prediction of groundwater characteristics in forested and harvested basins during spring snowmelt using a topographic index. Hydrological Processes, 2001, 15, 3389-3407.	2.6	40
155	Advances in Canadian forest hydrology, 1995-1998. Hydrological Processes, 2000, 14, 1551-1578.	2.6	60
156	Landscape controls on phosphorus loading to boreal lakes: implications for the potential impacts of forest harvesting. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 1977-1984.	1.4	74
157	Advances in Canadian forest hydrology, 1995–1998. , 2000, 14, 1551.		1
158	Advances in Canadian forest hydrology, 1995–1998. Hydrological Processes, 2000, 14, 1551-1578.	2.6	1
159	Export of nitrogen from catchments within a temperate forest: Evidence for a unifying mechanism regulated by variable source area dynamics. Water Resources Research, 1998, 34, 3105-3120.	4.2	261
160	Exploring functional similarity in the export of Nitrate-N from forested catchments: A mechanistic modeling approach. Water Resources Research, 1998, 34, 3079-3093.	4.2	94
161	Regulation of Nitrate-N Release from Temperate Forests: A Test of the N Flushing Hypothesis. Water Resources Research, 1996, 32, 3337-3354.	4.2	268
162	Ecosystem processes at the watershed scale: Sensitivity to potential climate change. Limnology and Oceanography, 1996, 41, 928-938.	3.1	53

#	Article	IF	CITATION
163	EFFECTS OF ARSENATE ON GROWTH OF NITROGEN-AND PHOSPHORUS-LIMITED CHLORELLA VULGARIS (CHLOROPHYCEAE) ISOLATES1. Journal of Phycology, 1990, 26, 641-650.	2.3	9
164	Can Restoration of Freshwater Mineral Soil Wetlands Deliver Nature-Based Climate Solutions to Agricultural Landscapes?. Frontiers in Ecology and Evolution, 0, 10, .	2.2	7