
Bethan Psaila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1532507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The immune landscape in BCRâ€ABL negative myeloproliferative neoplasms: inflammation, infections and opportunities for immunotherapy. British Journal of Haematology, 2022, 196, 1149-1158.	2.5	11
2	Modelling Myelofibrosis <i>in Vivo</i> : Success With NSG-S. , 2022, 19, .		0
3	HMGA1 chromatin regulators induce transcriptional networks involved in GATA2 and proliferation during MPN progression. Blood, 2022, 139, 2797-2815.	1.4	20
4	Processing single-cell RNA-seq datasets using SingCellaR. STAR Protocols, 2022, 3, 101266.	1.2	5
5	Iron status influences the response of cord blood megakaryocyte progenitors to eltrombopag inÂvitro. Blood Advances, 2022, 6, 13-27.	5.2	2
6	CD34+CD19â^ CD22+ B-cell progenitors may underlie phenotypic escape in patients treated with CD19-directed therapies. Blood, 2022, 140, 38-44.	1.4	20
7	Ultrastructural Changes in Platelets Portend Leukemogenesis. , 2022, 19, .		0
8	In utero origin of myelofibrosis presenting in adult monozygotic twins. Nature Medicine, 2022, 28, 1207-1211.	30.7	26
9	FEDORA: The Beginning of a Beautiful Friendship?. , 2022, 19, .		0
10	A tale of two alleles: <i>TP53</i> and transformation in MPNs. Blood, 2022, 139, 3567-3568.	1.4	1
11	Results of a national UK physician reported survey of COVID-19 infection in patients with a myeloproliferative neoplasm. Leukemia, 2021, 35, 2424-2430.	7.2	8
12	Interrogating the molecular genetics of chronic myeloproliferative malignancies for personalized management in 2021. Haematologica, 2021, 106, 1787-1793.	3.5	5
13	Application of Single-Cell Approaches to Study Myeloproliferative Neoplasm Biology. Hematology/Oncology Clinics of North America, 2021, 35, 279-293.	2.2	5
14	Impaired antibody response to COVIDâ€19 vaccination in patients with chronic myeloid neoplasms. British Journal of Haematology, 2021, 194, 1010-1015.	2.5	31
15	Single-cell profiling of human bone marrow progenitors reveals mechanisms of failing erythropoiesis in Diamond-Blackfan anemia. Science Translational Medicine, 2021, 13, eabf0113.	12.4	32
16	Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development. Cell Reports, 2021, 36, 109698.	6.4	38
17	Single-Cell Multi-Omics Reveals the Genetic, Cellular and Molecular Landscape of <i>TP53</i> Mutated Leukemic Transformation in MPN. Blood, 2021, 138, 3-3.	1.4	7
18	Artificial intelligence–based morphological fingerprinting of megakaryocytes: a new tool for assessing disease in MPN patients. Blood Advances, 2020, 4, 3284-3294.	5.2	51

BETHAN PSAILA

#	Article	IF	CITATIONS
19	Rapid Emergence of Chronic Lymphocytic Leukemia During JAK2 Inhibitor Therapy in a Patient With Myelofibrosis. HemaSphere, 2020, 4, e356.	2.7	4
20	Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets. Molecular Cell, 2020, 78, 477-492.e8.	9.7	106
21	Enhanced engraftment of human myelofibrosis stem and progenitor cells in MISTRG mice. Blood Advances, 2020, 4, 2477-2488.	5.2	15
22	Illuminating novel biological aspects and potential new therapeutic approaches for chronic myeloproliferative malignancies. Hematological Oncology, 2020, 38, 654-664.	1.7	3
23	The BET inhibitor CPI203 promotes ex vivo expansion of cord blood long-term repopulating HSCs and megakaryocytes. Blood, 2020, 136, 2410-2415.	1.4	18
24	Molecular Characterisation of Participants in the Phazar Trial Reveals Prognostic Impact of Mutations in Advanced-Phase-MPN. Blood, 2020, 136, 40-41.	1.4	0
25	Single Cell Approaches to Elucidate Novel and Aberrant Pathways in Megakaryocytes. Blood, 2020, 136, SCI3-SCI3.	1.4	0
26	Discovery of a CD10-negative B-progenitor in human fetal life identifies unique ontogeny-related developmental programs. Blood, 2019, 134, 1059-1071.	1.4	62
27	Single-cell approaches reveal novel cellular pathways for megakaryocyte and erythroid differentiation. Blood, 2019, 133, 1427-1435.	1.4	47
28	Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing. Molecular Cell, 2019, 73, 1292-1305.e8.	9.7	218
29	Sugar thieves and addicts: nutrient subversion in JAK2 MPNs. Blood, 2019, 134, 1778-1780.	1.4	0
30	Single-cell analysis of bone marrow–derived CD34+ cells from children with sickle cell disease and thalassemia. Blood, 2019, 134, 2111-2115.	1.4	21
31	Single Cell RNASeq Demonstrates That Mouse Erythroid Cells Are the Last Lineage to Emerge. Blood, 2018, 132, 1274-1274.	1.4	0
32	Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 2017, 17, 302-317.	28.4	1,272
33	Eltrombopag: a powerful chelator of cellular or extracellular iron(III) alone or combined with a second chelator. Blood, 2017, 130, 1923-1933.	1.4	98
34	Tense your megas! Structural rigidity is key. Blood, 2016, 128, 1997-1999.	1.4	1
35	Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biology, 2016, 17, 83.	8.8	124
36	Elucidation of the EP defect in Diamond-Blackfan anemia by characterization and prospective isolation of human EPs. Blood, 2015, 125, 2553-2557.	1.4	33

BETHAN PSAILA

#	Article	IF	CITATIONS
37	B-cell depletion in immune thrombocytopenia. Lancet, The, 2015, 385, 1599-1601.	13.7	0
38	Effect of thrombopoietin receptor agonists on the apoptotic profile of platelets in patients with chronic immune thrombocytopenia. American Journal of Hematology, 2014, 89, E228-34.	4.1	31
39	Eltrombopag Mobilizes Intracellular Iron Stores at Concentrations Lower Than Those Required with Other Clinically Available Iron Chelators. Blood, 2014, 124, 1353-1353.	1.4	6
40	Immune Thrombocytopenia (ITP). , 2013, , 819-833.		6
41	In vivo effects of eltrombopag on platelet function in immune thrombocytopenia: no evidence of platelet activation. Blood, 2012, 119, 4066-4072.	1.4	86
42	Platelet production and platelet destruction: assessing mechanisms of treatment effect in immune thrombocytopenia. Blood, 2011, 117, 5723-5732.	1.4	130
43	Stability of measurement of the immature platelet fraction. American Journal of Hematology, 2010, 85, 622-624.	4.1	24
44	Platelet Function and Response to Thrombopoietin Mimetics In Wiskott-Aldrich Syndrome/X-Linked Thrombocytopenia Blood, 2010, 116, 1429-1429.	1.4	5
45	The Effect of Eltrombopag on Human Platelet Resistance to Apoptosis: The Role of the Bcl-Xl Pathway. Blood, 2010, 116, 2520-2520.	1.4	0
46	The metastatic niche: adapting the foreign soil. Nature Reviews Cancer, 2009, 9, 285-293.	28.4	1,081
47	Effect of eltrombopag on platelet counts and bleeding during treatment of chronic idiopathic thrombocytopenic purpura: a randomised, double-blind, placebo-controlled trial. Lancet, The, 2009, 373, 641-648.	13.7	493
48	Intracranial hemorrhage (ICH) in children with immune thrombocytopenia (ITP): study of 40 cases. Blood, 2009, 114, 4777-4783.	1.4	184
49	Refractory immune thrombocytopenic purpura: current strategies for investigation and management. British Journal of Haematology, 2008, 143, 16-26.	2.5	72
50	Regulation of Vasculogenesis by Platelet-Mediated Recruitment of Bone Marrow–Derived Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 217-222.	2.4	63
51	Fc receptors in immune thrombocytopenias: a target for immunomodulation?. Journal of Clinical Investigation, 2008, 118, 2677-81.	8.2	27
52	Novel Thrombopoietic Agents. Hematology American Society of Hematology Education Program, 2007, 2007, 106-113.	2.5	18
53	Priming the â€~Soil' for Breast Cancer Metastasis: The Pre-Metastatic Niche. Breast Disease, 2007, 26, 65-74.	0.8	103

54 IVIg in ITP: no role for cytokines?. Blood, 2007, 109, 4-5.

1.4 1

BETHAN PSAILA

#	Article	IF	CITATIONS
55	Niche-to-niche migration of bone-marrow-derived cells. Trends in Molecular Medicine, 2007, 13, 72-81.	6.7	204
56	Eltrombopag for the Treatment of Chronic Idiopathic Thrombocytopenic Purpura. New England Journal of Medicine, 2007, 357, 2237-2247.	27.0	718
57	Immune Thrombocytopenic Purpura. Hematology/Oncology Clinics of North America, 2007, 21, 743-759.	2.2	64
58	The immune thrombocytopenic purpura (ITP) bleeding score: assessment of bleeding in patients with ITP. British Journal of Haematology, 2007, 138, 245-248.	2.5	140
59	Bone marrow cells in the â€ [~] pre-metastatic niche': within bone and beyond. Cancer and Metastasis Reviews, 2007, 25, 521-529.	5.9	282
60	Comparison of Platelet Function and Bleeding in Thrombocytopenic Patients with Immune Thrombocytopenic Purpura (ITP) and Chemotherapy-Induced Thrombocytopenia (CIT) Blood, 2007, 110, 2094-2094.	1.4	3
61	Insights into Therapeutic Mechanisms: Measuring Immature Platelet Fraction (IPF) Describes Response to Treatment in Immune Thrombocytopenic Purpura (ITP) Blood, 2006, 108, 1070-1070.	1.4	4