
Göran Karlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1531920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Concurrent stem- and lineage-affiliated chromatin programs precede hematopoietic lineage restriction. Cell Reports, 2022, 39, 110798.	6.4	6
2	Singleâ€cell sequencing in translational cancer research and challenges to meet clinical diagnostic needs. Genes Chromosomes and Cancer, 2021, 60, 504-524.	2.8	10
3	Defining the Emerging Blood System During Development at Single-Cell Resolution. Frontiers in Cell and Developmental Biology, 2021, 9, 660350.	3.7	4
4	Human Primary Airway Basal Cells Display a Continuum of Molecular Phases from Health to Disease in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 103-113.	2.9	13
5	Single-Cell Roadmap of Immune Cell Response in Chronic Myeloid Leukemia. Blood, 2020, 136, 4-5.	1.4	0
6	Characterization of Leukemic Stem Cells Heterogeneity in Chronic Myeloid Leukemia. Blood, 2019, 134, 4140-4140.	1.4	0
7	Transcriptome Based Projection of Single Cells to Uncover Development and Heterogeneity of Abnormal Hematopoietic Cells. Blood, 2019, 134, 2520-2520.	1.4	0
8	CD9 Marks Flt3+ Multipotent Hematopoietic Progenitors within Lsk Cells. Blood, 2019, 134, 2469-2469.	1.4	1
9	Immunophenotypic- and Molecular Analysis of Human Hematopoietic Stem and Progenitor Heterogeneity. Blood, 2019, 134, 3701-3701.	1.4	1
10	Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Cell, 2018, 173, 1204-1216.e26.	28.9	332
11	Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nature Communications, 2018, 9, 5150.	12.8	496
12	A Combinatorial Single-cell Approach to Characterize the Molecular and Immunophenotypic Heterogeneity of Human Stem and Progenitor Populations. Journal of Visualized Experiments, 2018, , .	0.3	2
13	Dissection of progenitor compartments resolves developmental trajectories in B-lymphopoiesis. Journal of Experimental Medicine, 2018, 215, 1947-1963.	8.5	20
14	Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. ELife, 2018, 7, .	6.0	77
15	Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood, 2017, 129, 2384-2394.	1.4	113
16	Single-Cell Analysis Identifies Distinct Stages of Human Endothelial-to-Hematopoietic Transition. Cell Reports, 2017, 19, 10-19.	6.4	51
17	The stem cell regulator PEDF is dispensable for maintenance and function of hematopoietic stem cells. Scientific Reports, 2017, 7, 10134.	3.3	4
18	A network including TGFβ/Smad4, Gata2, and p57 regulates proliferation ofÂmouse hematopoietic progenitor cells. Experimental Hematology, 2016, 44, 399-409.e5.	0.4	10

Göran Karlsson

#	Article	IF	CITATIONS
19	Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion. Cell Reports, 2016, 15, 2550-2562.	6.4	48
20	SCExV: a webtool for the analysis and visualisation of single cell qRT-PCR data. BMC Bioinformatics, 2015, 16, 320.	2.6	17
21	The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease. Haematologica, 2014, 99, 647-655.	3.5	18
22	Dynamic Analysis of Gene Expression and Genome-wide Transcription Factor Binding during Lineage Specification of Multipotent Progenitors. Cell Stem Cell, 2013, 13, 754-768.	11.1	86
23	The Tetraspanin CD9 Affords High-Purity Capture of All Murine Hematopoietic Stem Cells. Cell Reports, 2013, 4, 642-648.	6.4	42
24	Identification of the chemokine CCL28 as a growth and survival factor for human hematopoietic stem and progenitor cells. Blood, 2013, 121, 3838-3842.	1.4	17
25	SPARC is dispensable for murine hematopoiesis, despite its suspected pathophysiological role in 5q-myelodysplastic syndrome. Leukemia, 2012, 26, 2416-2419.	7.2	19
26	Hematopoietic stem cells are regulated by Cripto, as an intermediary of HIFâ€1α in the hypoxic bone marrow niche. Annals of the New York Academy of Sciences, 2012, 1266, 55-62.	3.8	24
27	Human hematopoietic stem/progenitor cells overexpressing Smad4 exhibit impaired reconstitution potential in vivo. Blood, 2012, 120, 4343-4351.	1.4	16
28	Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche. Cell, 2011, 147, 1146-1158.	28.9	654
29	Cripto Regulates Hematopoietic Stem Cells as a Hypoxic-Niche-Related Factor through Cell Surface Receptor GRP78. Cell Stem Cell, 2011, 9, 330-344.	11.1	152
30	Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation. Blood, 2011, 117, 5918-5930.	1.4	29
31	High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event. Leukemia, 2011, 25, 515-526.	7.2	59
32	Del(5q) Myelodysplastic Stem Cells Exhibit Their Clonal Advantage Via Increased Adhesion to the Microenvironment. Blood, 2011, 118, 790-790.	1.4	0
33	Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood, 2010, 115, 4689-4698.	1.4	50
34	Complex and Context Dependent Regulation of Hematopoiesis by TGFâ€Î² Superfamily Signaling. Annals of the New York Academy of Sciences, 2009, 1176, 55-69.	3.8	99
35	Stem Cell Regulation and Host Defense: The Logic and the Paradox. Cell Stem Cell, 2008, 2, 1-2.	11.1	15
36	Hematopoietic Stem Cell Responsiveness to Exogenous Signals Is Limited by Caspase-3. Cell Stem Cell, 2008, 2, 584-594.	11.1	101

Göran Karlsson

#	Article	IF	CITATIONS
37	Signaling pathways governing stem-cell fate. Blood, 2008, 111, 492-503.	1.4	318
38	Smad4 as a Therapeutic Target in Nup98-HoxA9-Induced Leukemia Blood, 2008, 112, 1799-1799.	1.4	0
39	Smad4 is critical for self-renewal of hematopoietic stem cells. Journal of Experimental Medicine, 2007, 204, 467-474.	8.5	114
40	Endoglin Is Not Critical for Hematopoietic Stem Cell Engraftment and Reconstitution but Regulates Adult Erythroid Development. Stem Cells, 2007, 25, 2809-2819.	3.2	18
41	Smad4 is critical for self-renewal of hematopoietic stem cells. Journal of Cell Biology, 2007, 176, i13-i13.	5.2	0
42	Smad5 is dispensable for adult murine hematopoiesis. Blood, 2006, 108, 3707-3712.	1.4	33
43	Smad7 promotes self-renewal of hematopoietic stem cells. Blood, 2006, 108, 4246-4254.	1.4	75
44	Gene expression profiling demonstrates that TGF-β1 signals exclusively through receptor complexes involving Alk5 and identifies targets of TGF-β signaling. Physiological Genomics, 2005, 21, 396-403.	2.3	33
45	Global Gene Expression Analysis Demonstrates that Transforming Growth Factor β1 (TGF-β1) Signals Exclusively through Receptor Complexes Involving TGF-β Receptor I and Identifies Numerous Targets of TGF-β Signaling Blood, 2004, 104, 2178-2178.	1.4	3