Liang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1531879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Metal–Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp ³)â~'H Bonds and Oxygen. Angewandte Chemie, 2022, 134, .	2.0	6
2	A Metal–Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp ³)â^'H Bonds and Oxygen. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
3	Dye-loaded metal–organic helical capsules applied to the combination of photocatalytic H ₂ S splitting and nitroaromatic hydrogenation. Chemical Communications, 2022, 58, 807-810.	4.1	9
4	Vanadium(V ^{IV})–Porphyrin-Based Metal–Organic Frameworks for Synergistic Bimetallic Activation of Inert C(sp ³)–H Bonds. ACS Applied Materials & Interfaces, 2022, 14, 2794-2804.	8.0	9
5	Metal–Organic Framework-Encapsulated Anthraquinone for Efficient Photocatalytic Hydrogen Atom Transfer. ACS Applied Materials & Interfaces, 2022, 14, 7980-7989.	8.0	9
6	Synthesis of a Lanthanide Metal–Organic Framework and Its Fluorescent Detection for Phosphate Group-Based Molecules Such as Adenosine Triphosphate. Inorganic Chemistry, 2022, 61, 3132-3140.	4.0	23
7	Binuclear copper iodine cluster-based coordination sheets as photocatalysts for decarboxylative cyanation. Chemical Communications, 2022, 58, 3961-3964.	4.1	6
8	Palladium atalyzed Stagewise Strainâ€Releaseâ€Driven Câ^'C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
9	Iron-Catalyzed Photoredox Functionalization of Methane and Heavier Gaseous Alkanes: Scope, Kinetics, and Computational Studies. Organic Letters, 2022, 24, 1901-1906.	4.6	34
10	Merging Charge Transfer into Metal–Organic Frameworks to Achieve High Reduction Potentials via Multiphoton Excitation. ACS Applied Materials & Interfaces, 2022, 14, 15307-15316.	8.0	9
11	Ligand-regulated metal–organic frameworks for synergistic photoredox and nickel catalysis. Inorganic Chemistry Frontiers, 2022, 9, 3116-3129.	6.0	3
12	Modifying electron injection kinetics for selective photoreduction of nitroarenes into cyclic and asymmetric azo compounds. Nature Communications, 2022, 13, 1940.	12.8	13
13	Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
14	Eosin Y-Containing Metal–Organic Framework as a Heterogeneous Catalyst for Direct Photoactivation of Inert C–H Bonds. Inorganic Chemistry, 2022, 61, 7256-7265.	4.0	8
15	Engineering Homochiral Dinuclear Ir(III)-Metallohelix-Based Porous Molecular Crystals for Atropisomer Enantioseparation. Chemistry of Materials, 2022, 34, 4471-4478.	6.7	5
16	Chromophoreâ€Inspired Design of Pyridiniumâ€Based Metal–Organic Polymers for Dual Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
17	A novel copper metal–organic framework catalyst for the highly efficient conversion of CO ₂ with propargylic amines. Inorganic Chemistry Frontiers, 2022, 9, 3839-3844.	6.0	4
18	A Binuclear Cerium-Based Metal–Organic Framework as an Artificial Monooxygenase for the Saturated Hydrocarbon Aerobic Oxidation with High Efficiency and High Selectivity. ACS Catalysis, 2022, 12, 7821-7832.	11.2	17

#	Article	IF	CITATIONS
19	Anthraquinone-Based Metal–Organic Frameworks as a Bifunctional Photocatalyst for C–H Activation. Inorganic Chemistry, 2022, 61, 9493-9503.	4.0	19
20	Luminescent Coordination Polymer with Its Multistimuli-Responsive Sensitivity Enabled and Boosted by Its Dual Emission. Crystal Growth and Design, 2022, 22, 4845-4853.	3.0	3
21	Cobalt-Catalyzed Fluoroallyllation of Carbonyls via C–C Activation of <i>gem</i> -Difluorocyclopropanes. Organic Letters, 2022, 24, 5051-5055.	4.6	24
22	Photocatalytic Generation of Ï€â€Allyltitanium Complexes via Radical Intermediates. Angewandte Chemie - International Edition, 2021, 60, 1561-1566.	13.8	62
23	Development and Application of Multi Purpose Gateway for Swarm Intelligent Building. , 2021, , .		0
24	Convenient C(sp ³)–H bond functionalisation of light alkanes and other compounds by iron photocatalysis. Green Chemistry, 2021, 23, 6984-6989.	9.0	95
25	Triarylamine-based porous coordination polymers performing both hydrogen atom transfer and photoredox catalysis for regioselective α-amino C(sp ³)–H arylation. Chemical Science, 2021, 12, 8512-8520.	7.4	14
26	A Multi-interface Data Acquisition Gateway Based on 6LoWPAN for Multi-sensor Situation. , 2021, , .		1
27	Multi-Points Indoor Air Quality Monitoring Based on Internet of Things. IEEE Access, 2021, 9, 70479-70492.	4.2	27
28	Ir-Porphyrin-Based Metal–Organic Framework as a Dual Metallo- and Photocatalyst for Inert Alkyl C(sp ³) â~` H Bond Activation and Direct Functionalization. ACS Applied Materials & Interfaces, 2021, 13, 10925-10932.	8.0	14
29	Photoresponse within dye-incorporated metal-organic architectures. Coordination Chemistry Reviews, 2021, 430, 213648.	18.8	21
30	Multiâ€Component Metalâ€Organic Frameworks Significantly Boost Visibleâ€Lightâ€Driven Hydrogen Production Coupled with Selective Organic Oxidation. Chemistry - an Asian Journal, 2021, 16, 1237-1244.	3.3	10
31	Photocatalytic C–H Activation with Alcohol as a Hydrogen Atom Transfer Agent in a 9-Fluorenone Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 25898-25905.	8.0	12
32	A host–guest semibiological photosynthesis system coupling artificial and natural enzymes for solar alcohol splitting. Nature Communications, 2021, 12, 5092.	12.8	20
33	Hierarchically Porous Metal–Organic Framework/MoS ₂ Interface for Selective Photocatalytic Conversion of CO ₂ with H ₂ O into CH ₃ COOH. Angewandte Chemie - International Edition, 2021, 60, 24849-24853.	13.8	76
34	Ratiometric Fluorescence Imaging of Intracellular MicroRNA with NIR-Assisted Signal Amplification by a Ru-SiO ₂ @Polydopamine Nanoplatform. ACS Applied Materials & Interfaces, 2021, 13, 45214-45223.	8.0	7
35	Hierarchically Porous Metal–Organic Framework/MoS ₂ Interface for Selective Photocatalytic Conversion of CO ₂ with H ₂ O into CH ₃ COOH. Angewandte Chemie, 2021, 133, 25053-25057.	2.0	16
36	Selective C(sp ³)–H activation of simple alkanes: visible light-induced metal-free synthesis of phenanthridines with H ₂ O ₂ as a sustainable oxidant. Green Chemistry, 2021, 23, 6926-6930.	9.0	32

#	Article	IF	CITATIONS
37	Titelbild: Hierarchically Porous Metal–Organic Framework/MoS ₂ Interface for Selective Photocatalytic Conversion of CO ₂ with H ₂ O into CH ₃ COOH (Angew. Chem. 47/2021). Angewandte Chemie, 2021, 133, 24933-24933.	2.0	0
38	Cuprous Cluster-Based Coordination Sheets as Photocatalytic Regulators to Activate Oxygen, Benzoquinone, and Thianthrenium Salts. ACS Applied Materials & Interfaces, 2021, 13, 58498-58507.	8.0	9
39	Photo-induced direct alkynylation of methane and other light alkanes by iron catalysis. Green Chemistry, 2021, 23, 9406-9411.	9.0	40
40	Cavity-directed nitroaromatics sensing within a carbazole-based luminescent supramolecular M2L3 cage. Chinese Chemical Letters, 2020, 31, 95-98.	9.0	15
41	A Cofactor‧ubstrateâ€Based Supramolecular Fluorescent Probe for the Ultrafast Detection of Nitroreductase under Hypoxic Conditions. Angewandte Chemie - International Edition, 2020, 59, 6021-6027.	13.8	36
42	Product Control in Conversion of Ethanol on MILâ€101(Cr) with Adjustable BrÃ,nsted Acid Density. ChemCatChem, 2020, 12, 6234-6240.	3.7	2
43	Synergistic photoredox and copper catalysis by diode-like coordination polymer with twisted and polar copper–dye conjugation. Nature Communications, 2020, 11, 5384.	12.8	34
44	Ratiometric Detection of DNA and Protein in Serum by a Universal Tripyridinyl Ru ^{II} Complex–Encapsulated SiO ₂ @Polydopamine Fluorescence Nanoplatform. Analytical Chemistry, 2020, 92, 15908-15915.	6.5	27
45	Design and Implementation Remote Monitoring System for Paving Machine Based on IoT. , 2020, , .		1
46	A host–guest approach to combining enzymatic and artificial catalysis for catalyzing biomimetic monooxygenation. Nature Communications, 2020, 11, 2903.	12.8	22
47	Tailoring nanoparticles based on boron dipyrromethene for cancer imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1627.	6.1	11
48	Electron transfer in the confined environments of metal–organic coordination supramolecular systems. Chemical Society Reviews, 2020, 49, 5561-5600.	38.1	75
49	Design of High Temperature Anticorrosion Diagnosis System for Atmospheric and Vacuum Distillation Unit Based on Forcecontrol and SQL Sever2014. , 2020, , .		0
50	Research Status of 6LoWPAN in the Field of Internet of Things. , 2020, , .		1
51	Double-Helical Ag–S Rod-Based Porous Coordination Polymers with Double Activation: σ-Active and Ï€-Active Functions. ACS Omega, 2019, 4, 10828-10833.	3.5	11
52	Metal–Organic Capsules with NADH Mimics as Switchable Selectivity Regulators for Photocatalytic Transfer Hydrogenation. Journal of the American Chemical Society, 2019, 141, 12707-12716.	13.7	45
53	Engineering pH-Responsive BODIPY Nanoparticles for Tumor Selective Multimodal Imaging and Phototherapy. ACS Applied Materials & Interfaces, 2019, 11, 43928-43935.	8.0	43
54	Negatively charged metal–organic hosts with cobalt dithiolene species: improving PET processes for light-driven proton reduction through host–guest electrostatic interactions. Chemical Communications, 2019, 55, 8524-8527.	4.1	8

#	Article	IF	CITATIONS
55	Asymmetric Catalysis within the Chiral Confined Space of Metal–Organic Architectures. Small, 2019, 15, e1804770.	10.0	51
56	Construction of a thiourea-based metal–organic framework with open Ag ⁺ sites for the separation of propene/propane mixtures. Journal of Materials Chemistry A, 2019, 7, 25567-25572.	10.3	33
57	A new cobalt triangular prism supramolecular flask: Encapsulation of a quinhydrone cofactor for hydrogenation of nitroarenes with high selectivity and efficiency. Inorganic Chemistry Communication, 2019, 109, 107558.	3.9	4
58	Photochemical Properties of Host–Guest Supramolecular Systems with Structurally Confined Metal–Organic Capsules. Accounts of Chemical Research, 2019, 52, 100-109.	15.6	124
59	Mixed-Ligand Metal–Organic Framework for Two-Photon Responsive Photocatalytic C–N and C–C Coupling Reactions. ACS Catalysis, 2019, 9, 422-430.	11.2	88
60	Catalytic properties of chemical transformation within the confined pockets of Werner-type capsules. Coordination Chemistry Reviews, 2019, 378, 151-187.	18.8	62
61	Two-dimensional nickel hydroxide/sulfides nanosheet as an efficient cocatalyst for photocatalytic H2 evolution over CdS nanospheres. Journal of Colloid and Interface Science, 2018, 514, 634-641.	9.4	37
62	Silver Clusters as Robust Nodes and π– <i>A</i> ctivation Sites for the Construction of Heterogeneous Catalysts for the Cycloaddition of Propargylamines. ACS Catalysis, 2018, 8, 1384-1391.	11.2	85
63	Binding of anions in triply interlocked coordination catenanes and dynamic allostery for dehalogenation reactions. Chemical Science, 2018, 9, 1050-1057.	7.4	29
64	Alkyne Activation by a Porous Silver Coordination Polymer for Heterogeneous Catalysis of Carbon Dioxide Cycloaddition. ACS Catalysis, 2017, 7, 2248-2256.	11.2	137
65	A thiourea-functionalized metal–organic macrocycle for the catalysis of Michael additions and prominent size-selective effect. Dalton Transactions, 2017, 46, 4086-4092.	3.3	7
66	Renewable Molecular Flasks with NADH Models: Combination of Lightâ€Đriven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones. Angewandte Chemie - International Edition, 2017, 56, 8692-8696.	13.8	39
67	Development of Excipient-Free Freeze-Dryable Unimolecular Hyperstar Polymers for Efficient siRNA Silencing. ACS Macro Letters, 2017, 6, 700-704.	4.8	23
68	Encapsulation of a Quinhydrone Cofactor in the Inner Pocket of Cobalt Triangular Prisms: Combined Lightâ€Driven Reduction of Protons and Hydrogenation of Nitrobenzene. Angewandte Chemie - International Edition, 2017, 56, 15284-15288.	13.8	38
69	DHPA-Containing Cobalt-Based Redox Metal-Organic Cyclohelicates as Enzymatic Molecular Flasks for Light-Driven H2 Production. Scientific Reports, 2017, 7, 14347.	3.3	6
70	Modifying electron transfer between photoredox and organocatalytic units via framework interpenetration for Î ² -carbonyl functionalization. Nature Communications, 2017, 8, 361.	12.8	51
71	Control of Redox Events by Dye Encapsulation Applied to Lightâ€Driven Splitting of Hydrogen Sulfide. Angewandte Chemie - International Edition, 2017, 56, 11759-11763.	13.8	53
72	Control of Redox Events by Dye Encapsulation Applied to Lightâ€Driven Splitting of Hydrogen Sulfide. Angewandte Chemie, 2017, 129, 11921-11925.	2.0	17

#	Article	IF	CITATIONS
73	Renewable Molecular Flasks with NADH Models: Combination of Lightâ€Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones. Angewandte Chemie, 2017, 129, 8818-8822.	2.0	8
74	Rational design of SnO2-based electron transport layer in mesoscopic perovskite solar cells: more kinetically favorable than traditional double-layer architecture. Science China Materials, 2017, 60, 963-976.	6.3	13
75	Coordinative Alignment of Chiral Molecules to Control over the Chirality Transfer in Spontaneous Resolution and Asymmetric Catalysis. Scientific Reports, 2017, 7, 15418.	3.3	12
76	Redox-active copper triangles as an enzymatic molecular flask for light-driven hydrogen production. RSC Advances, 2017, 7, 48989-48993.	3.6	6
77	Encapsulation of a Quinhydrone Cofactor in the Inner Pocket of Cobalt Triangular Prisms: Combined Lightâ€Đriven Reduction of Protons and Hydrogenation of Nitrobenzene. Angewandte Chemie, 2017, 129, 15486-15490.	2.0	11
78	Amorphous Inorganic Electronâ€Selective Layers for Efficient Perovskite Solar Cells: Feasible Strategy Towards Roomâ€Temperature Fabrication. Advanced Materials, 2016, 28, 1891-1897.	21.0	115
79	Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis. ACS Catalysis, 2016, 6, 7935-7947.	11.2	445
80	Metal–organic redox vehicles to encapsulate organic dyes for photocatalytic protons and carbon dioxide reduction. Inorganic Chemistry Frontiers, 2016, 3, 1256-1263.	6.0	9
81	Redoxâ€Active M ₈ L ₆ Cubic Hosts with Tetraphenylethylene Faces Encapsulate Organic Dyes for Lightâ€Driven H ₂ Production. Chemistry - A European Journal, 2016, 22, 18107-18114.	3.3	47
82	Photoactive Metal–Organic Framework and Its Film for Light-Driven Hydrogen Production and Carbon Dioxide Reduction. Inorganic Chemistry, 2016, 55, 8153-8159.	4.0	48
83	Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis. Bioresource Technology, 2016, 221, 147-156.	9.6	36
84	A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nature Communications, 2016, 7, 12225.	12.8	62
85	Engineering an iridium-containing metal–organic molecular capsule for induced-fit geometrical conversion and dual catalysis. Chemical Communications, 2016, 52, 9628-9631.	4.1	32
86	Multicomponent self-assembly of a pentanuclear Ir–Zn heterometal–organic polyhedron for carbon dioxide fixation and sulfite sequestration. Chemical Communications, 2016, 52, 5104-5107.	4.1	30
87	A photosensitizing decatungstate-based MOF as heterogeneous photocatalyst for the selective C–H alkylation of aliphatic nitriles. Chemical Communications, 2016, 52, 4714-4717.	4.1	49
88	Organized Aggregation Makes Insoluble Perylene Diimide Efficient for the Reduction of Aryl Halides via Consecutive Visible Light-Induced Electron-Transfer Processes. Journal of the American Chemical Society, 2016, 138, 3958-3961.	13.7	235
89	Light-driven hydrogen evolution with a nickel thiosemicarbazone redox catalyst featuring Niâ‹ ⁻ H interactions under basic conditions. New Journal of Chemistry, 2015, 39, 1051-1059.	2.8	25
90	Performance enhancement of filled-type solar collector with U-tube. Journal of Central South University, 2015, 22, 1124-1131.	3.0	7

#	Article	IF	CITATIONS
91	A Metal–Organic Tetrahedron as a Redox Vehicle to Encapsulate Organic Dyes for Photocatalytic Proton Reduction. Journal of the American Chemical Society, 2015, 137, 3967-3974.	13.7	193
92	Coordination-driven nanosized lanthanide â€~Molecular Lanterns' as luminescent chemosensors for the selective sensing of magnesium ions. Dalton Transactions, 2014, 43, 335-343.	3.3	49
93	Fluorescent detection of RDX within DHPA-containing metal–organic polyhedra. Chemical Communications, 2014, 50, 3467-3469.	4.1	40
94	Ceriumâ€Based M ₄ L ₄ Tetrahedra as Molecular Flasks for Selective Reaction Prompting and Luminescent Reaction Tracing. Chemistry - A European Journal, 2014, 20, 2224-2231.	3.3	69
95	Cerium-based M ₄ L ₄ tetrahedrons containing hydrogen bond groups as functional molecular flasks for selective reaction prompting. New Journal of Chemistry, 2014, 38, 3137-3145.	2.8	21
96	A new method for building energy consumption statistics evaluation: ratio of real energy consumption expense to energy consumption. Energy Systems, 2014, 5, 627-642.	3.0	7
97	Engineering Chiral Polyoxometalate Hybrid Metal–Organic Frameworks for Asymmetric Dihydroxylation of Olefins. Journal of the American Chemical Society, 2013, 135, 10186-10189.	13.7	348
98	A photoactive basket-like metal–organic tetragon worked as an enzymatic molecular flask for light driven H ₂ production. Chemical Communications, 2013, 49, 627-629.	4.1	52
99	Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Advanced Drug Delivery Reviews, 2013, 65, 744-755.	13.7	286
100	Data Acquisition and Transmission System for Building Energy Consumption Monitoring. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.7	7
101	Stem Cell Labeling using Polyethylenimine Conjugated (α-NaYbF ₄ :Tm ³⁺)/CaF ₂ Upconversion Nanoparticles. Theranostics, 2013, 3, 249-257.	10.0	82
102	Metal–organic polyhedra containing 36 and 24 folds of amide groups for selective luminescent recognition of natural disaccharides. Chemical Communications, 2012, 48, 6022.	4.1	44
103	Mild hydrothermal synthesis, structure and characterization of the vanadyl phosphate hydrate Pb(VOPO4)2·3H2O: the formation of spin dimers in a three dimensional crystal structure. Journal of Materials Chemistry, 2012, 22, 19872.	6.7	6
104	Photoactive Chiral Metal–Organic Frameworks for Light-Driven Asymmetric α-Alkylation of Aldehydes. Journal of the American Chemical Society, 2012, 134, 14991-14999.	13.7	410
105	Homochiral Crystallization of Metal–Organic Silver Frameworks: Asymmetric [3+2] Cycloaddition of an Azomethine Ylide. Angewandte Chemie - International Edition, 2012, 51, 10127-10131.	13.8	108
106	A hybrid optimization strategy for simultaneous synthesis of heat exchanger network. Korean Journal of Chemical Engineering, 2012, 29, 1298-1309.	2.7	19
107	An Amide-Containing Metal–Organic Tetrahedron Responding to a Spin-Trapping Reaction in a Fluorescent Enhancement Manner for Biological Imaging of NO in Living Cells. Journal of the American Chemical Society, 2011, 133, 12402-12405.	13.7	214
108	Metal–Organic Cyclohelicates as Optical Receptors for Glutathione: Syntheses, Structures, and Host–Guest Behaviors. Chemistry - an Asian Journal, 2011, 6, 1225-1233.	3.3	9

#	Article	IF	CITATIONS
109	Face-driven octanuclear cerium(iv) luminescence polyhedra: synthesis and luminescent sensing natural saccharides. Chemical Communications, 2011, 47, 9387.	4.1	51
110	Two New Hybrid Architectures Based on Polyoxometaloborates and Imidazole Fragments. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2016-2021.	1.2	6
111	Crystal Structures and Properties of Large Protonated Water Clusters Encapsulated by Metalâ`'Organic Frameworks. Journal of the American Chemical Society, 2010, 132, 3321-3330.	13.7	150
112	Homochiral Metalâ^'Organic Frameworks for Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 2010, 132, 14321-14323.	13.7	467
113	A symmetry-controlled and face-driven approach for the assembly of cerium-based molecular polyhedra. Dalton Transactions, 2010, 39, 11122.	3.3	36
114	Metallohelical Triangles for Selective Detection of Adenosine Triphosphate in Aqueous Media. Inorganic Chemistry, 2009, 48, 408-410.	4.0	49
115	Co ^{II} Molecular Square with Single-Molecule Magnet Properties. Inorganic Chemistry, 2009, 48, 854-860.	4.0	82
116	Dansyl-based fluorescent chemosensors for selective responses of Cr(<scp>iii</scp>). New Journal of Chemistry, 2009, 33, 653-658.	2.8	77
117	Self-assembly of cerium-based metal–organic tetrahedrons for size-selectively luminescent sensing natural saccharides. Chemical Communications, 2009, , 7554.	4.1	63
118	Metalâ€Tunable Nanocages as Artificial Chemosensors. Angewandte Chemie - International Edition, 2008, 47, 877-881.	13.8	121
119	A mixed-valence (FeII)2(FeIII)2 square for molecular expression of quantum cellular automata. Chemical Communications, 2008, , 5725.	4.1	66
120	Octanuclear Metallocyclic Ni4Fc4 Compound:  Synthesis, Crystal Structure, and Electrochemical Sensing for Mg2+. Inorganic Chemistry, 2004, 43, 5174-5176.	4.0	56
121	Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angewandte Chemie, 0, , .	2.0	2
122	Chromophoreâ€inspired Design of Pyridiniumâ€based Metalâ€Organic Polymers for Dual Photoredox Catalysis. Angewandte Chemie, 0, , .	2.0	0
123	Binding of Dual-Function Hybridized Metal – Organic Capsules to Enzymes for Cascade Catalysis. Jacs Au, 0, , .	7.9	2