
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1531798/publications.pdf Version: 2024-02-01

FUA C. RAKASZ

#	Article	IF	CITATIONS
1	SOSIP Trimer-Specific Antibodies Isolated from a Simian-Human Immunodeficiency Virus-Infected Monkey with versus without a Pre-blocking Step with gp41. Journal of Virology, 2022, 96, JVI0158221.	3.4	0
2	CAR/CXCR5-T cell immunotherapy is safe and potentially efficacious in promoting sustained remission of SIV infection. PLoS Pathogens, 2022, 18, e1009831.	4.7	20
3	Immunophenotyping of Rhesus CMV â€5pecific CD8 Tâ€Cell Populations. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 278-288.	1.5	3
4	Non-neutralizing Antibodies May Contribute to Suppression of SIVmac239 Viremia in Indian Rhesus Macaques. Frontiers in Immunology, 2021, 12, 657424.	4.8	2
5	Effector function does not contribute to protection from virus challenge by a highly potent HIV broadly neutralizing antibody in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	23
6	Recombinant Herpesvirus Vectors: Durable Immune Responses and Durable Protection against Simian Immunodeficiency Virus SIVmac239 Acquisition. Journal of Virology, 2021, 95, e0033021.	3.4	2
7	Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. Science Advances, 2021, 7, .	10.3	37
8	Rapid Transduction and Expansion of Transduced T Cells with Maintenance of Central Memory Populations. Molecular Therapy - Methods and Clinical Development, 2020, 16, 1-10.	4.1	24
9	A Recombinant Rhesus Monkey Rhadinovirus Deleted of Glycoprotein L Establishes Persistent Infection of Rhesus Macaques and Elicits Conventional T Cell Responses. Journal of Virology, 2020, 94, .	3.4	3
10	Liver-Directed but Not Muscle-Directed AAV-Antibody Gene Transfer Limits Humoral Immune Responses in Rhesus Monkeys. Molecular Therapy - Methods and Clinical Development, 2020, 16, 94-102.	4.1	18
11	Rectal Acquisition of Simian Immunodeficiency Virus (SIV) SIVmac239 Infection despite Vaccine-Induced Immune Responses against the Entire SIV Proteome. Journal of Virology, 2020, 94, .	3.4	7
12	Cervico-Vaginal Inflammatory Cytokine and Chemokine Responses to Two Different SIV Immunogens. Frontiers in Immunology, 2020, 11, 1935.	4.8	3
13	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	4.7	61
14	Rhesus Cytomegalovirus-Specific CD8+ Cytotoxic T Lymphocytes Do Not Become Functionally Exhausted in Chronic SIVmac239 Infection. Frontiers in Immunology, 2020, 11, 1960.	4.8	1
15	An Automated Fluorescence-Based Method to Isolate Bone Marrow-Derived Plasma Cells from Rhesus Macaques Using SIVmac239 SOSIP.664. Molecular Therapy - Methods and Clinical Development, 2020, 18, 781-790.	4.1	0
16	Long-Term Protection of Rhesus Macaques from Zika Virus Reinfection. Journal of Virology, 2020, 94, .	3.4	7
17	Long-Term Delivery of an Anti-SIV Monoclonal Antibody With AAV. Frontiers in Immunology, 2020, 11, 449.	4.8	29
18	Induction of Transient Virus Replication Facilitates Antigen-Independent Isolation of SIV-Specific Monoclonal Antibodies. Molecular Therapy - Methods and Clinical Development, 2020, 16, 225-237.	4.1	5

#	Article	IF	CITATIONS
19	AAV-delivered eCD4-Ig protects rhesus macaques from high-dose SIVmac239 challenges. Science Translational Medicine, 2019, 11, .	12.4	35
20	Vaccine protection against rectal acquisition of SIVmac239 in rhesus macaques. PLoS Pathogens, 2019, 15, e1008015.	4.7	7
21	Low levels of SIV-specific CD8+ T cells in germinal centers characterizes acute SIV infection. PLoS Pathogens, 2019, 15, e1007311.	4.7	18
22	Adeno-Associated Virus Delivery of Anti-HIV Monoclonal Antibodies Can Drive Long-Term Virologic Suppression. Immunity, 2019, 50, 567-575.e5.	14.3	96
23	The Frequency of Vaccine-Induced T-Cell Responses Does Not Predict the Rate of Acquisition after Repeated Intrarectal SIVmac239 Challenges in Mamu-B*08 + Rhesus Macaques. Journal of Virology, 2019, 93, .	3.4	5
24	Vaccine protection against SIVmac239 acquisition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1739-1744.	7.1	15
25	Neutrophil progenitor populations of rhesus macaques. Journal of Leukocyte Biology, 2019, 105, 113-121.	3.3	8
26	Maintenance of AP-2-Dependent Functional Activities of Nef Restricts Pathways of Immune Escape from CD8 T Lymphocyte Responses. Journal of Virology, 2018, 92, .	3.4	11
27	ALT-803 Transiently Reduces Simian Immunodeficiency Virus Replication in the Absence of Antiretroviral Treatment. Journal of Virology, 2018, 92, .	3.4	52
28	Mucosal antibody responses to vaccines targeting SIV protease cleavage sites or full-length Gag and Env proteins in Mauritian cynomolgus macaques. PLoS ONE, 2018, 13, e0202997.	2.5	11
29	A recombinant herpesviral vector containing a near-full-length SIVmac239 genome produces SIV particles and elicits immune responses to all nine SIV gene products. PLoS Pathogens, 2018, 14, e1007143.	4.7	9
30	Simian Immunodeficiency Virus (SIV)-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication. Frontiers in Immunology, 2018, 9, 492.	4.8	60
31	<i>Mamu-B*17</i> ⁺ Rhesus Macaques Vaccinated with <i>env</i> , <i>vif</i> , and <i>nef</i> Manifest Early Control of SIVmac239 Replication. Journal of Virology, 2018, 92, .	3.4	11
32	Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys. Journal of Virology, 2017, 91, .	3.4	5
33	Rare Control of SIVmac239 Infection in a Vaccinated Rhesus Macaque. AIDS Research and Human Retroviruses, 2017, 33, 843-858.	1.1	15
34	Dengue Virus Evades AAV-Mediated Neutralizing Antibody Prophylaxis in Rhesus Monkeys. Molecular Therapy, 2017, 25, 2323-2331.	8.2	9
35	Use of a gamma-2 herpesvirus as a vector to deliver antibodies to rhesus monkeys. Gene Therapy, 2017, 24, 487-492.	4.5	0
36	Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLoS Pathogens, 2017, 13, e1006378.	4.7	201

#	Article	IF	CITATIONS
37	KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques. PLoS Pathogens, 2017, 13, e1006506.	4.7	21
38	Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathogens, 2017, 13, e1006529.	4.7	19
39	Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques. PLoS Neglected Tropical Diseases, 2016, 10, e0005168.	3.0	125
40	Simian Immunodeficiency Virus-Producing Cells in Follicles Are Partially Suppressed by CD8 ⁺ Cells <i>In Vivo</i> . Journal of Virology, 2016, 90, 11168-11180.	3.4	74
41	Immunogenicity of trimethoprim/sulfamethoxazole in a macaque model of HIV infection. Toxicology, 2016, 368-369, 10-18.	4.2	3
42	OMIPâ€035: Functional analysis of natural killer cell subsets in macaques. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 799-802.	1.5	13
43	A rhesus macaque model of Asian-lineage Zika virus infection. Nature Communications, 2016, 7, 12204.	12.8	353
44	Acute Viral Escape Selectively Impairs Nef-Mediated Major Histocompatibility Complex Class I Downmodulation and Increases Susceptibility to Antiviral T Cells. Journal of Virology, 2016, 90, 2119-2126.	3.4	5
45	Host Anti-antibody Responses Following Adeno-associated Virus–mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys. Molecular Therapy, 2016, 24, 76-86.	8.2	60
46	Follicular Regulatory CD8 T Cells Impair the Germinal Center Response in SIV and Ex Vivo HIV Infection. PLoS Pathogens, 2016, 12, e1005924.	4.7	55
47	<scp>OMIP</scp> â€028: Activation panel for <scp>R</scp> hesus macaque <scp>NK</scp> cell subsets. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 890-893.	1.5	18
48	Glycerol Monolaurate Microbicide Protection against Repeat High-Dose SIV Vaginal Challenge. PLoS ONE, 2015, 10, e0129465.	2.5	27
49	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	12.6	482
50	Envelope Glycoprotein Internalization Protects Human and Simian Immunodeficiency Virus-Infected Cells from Antibody-Dependent Cell-Mediated Cytotoxicity. Journal of Virology, 2015, 89, 10648-10655.	3.4	57
51	Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nature Communications, 2015, 6, 8608.	12.8	87
52	Vaccine-Induced Simian Immunodeficiency Virus-Specific CD8 ⁺ T-Cell Responses Focused on a Single Nef Epitope Select for Escape Variants Shortly after Infection. Journal of Virology, 2015, 89, 10802-10820.	3.4	30
53	Tetherin antagonism by Vpu protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6425-6430.	7.1	143
54	Compartmentalization of Simian Immunodeficiency Virus Replication within Secondary Lymphoid Tissues of Rhesus Macaques Is Linked to Disease Stage and Inversely Related to Localization of Virus-Specific CTL. Journal of Immunology, 2014, 193, 5613-5625.	0.8	127

#	Article	IF	CITATIONS
55	Vaccination with <i>gag</i> , <i>vif</i> , and <i>nef</i> Gene Fragments Affords Partial Control of Viral Replication after Mucosal Challenge with SIVmac239. Journal of Virology, 2014, 88, 7493-7516.	3.4	23
56	A Rapid Immunization Strategy with a Live-Attenuated Tetravalent Dengue Vaccine Elicits Protective Neutralizing Antibody Responses in Non-Human Primates. Frontiers in Immunology, 2014, 5, 263.	4.8	23
57	Vaccination against Endogenous Retrotransposable Element Consensus Sequences Does Not Protect Rhesus Macaques from SIVsmE660 Infection and Replication. PLoS ONE, 2014, 9, e92012.	2.5	8
58	Cytotoxic Capacity of SIV-Specific CD8+ T Cells against Primary Autologous Targets Correlates with Immune Control in SIV-Infected Rhesus Macaques. PLoS Pathogens, 2013, 9, e1003195.	4.7	24
59	Acute Phase CD8+ T Lymphocytes against Alternate Reading Frame Epitopes Select for Rapid Viral Escape during SIV Infection. PLoS ONE, 2013, 8, e61383.	2.5	6
60	Immunogenicity of Seven New Recombinant Yellow Fever Viruses 17D Expressing Fragments of SIVmac239 Gag, Nef, and Vif in Indian Rhesus Macaques. PLoS ONE, 2013, 8, e54434.	2.5	15
61	Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18921-18925.	7.1	441
62	A Nonfucosylated Variant of the anti-HIV-1 Monoclonal Antibody b12 Has Enhanced Fcl ³ RIIIa-Mediated Antiviral Activity <i>In Vitro</i> but Does Not Improve Protection against Mucosal SHIV Challenge in Macaques. Journal of Virology, 2012, 86, 6189-6196.	3.4	110
63	Vaccine-induced CD8+ T cells control AIDS virus replication. Nature, 2012, 491, 129-133.	27.8	165
64	Protection against High-Dose Highly Pathogenic Mucosal SIV Challenge at Very Low Serum Neutralizing Titers of the Antibody-Like Molecule CD4-IgG2. PLoS ONE, 2012, 7, e42209.	2.5	15
65	Vaccination with Cancer- and HIV Infection-Associated Endogenous Retrotransposable Elements Is Safe and Immunogenic. Journal of Immunology, 2012, 189, 1467-1479.	0.8	46
66	Dengue virus-specific CD4+ and CD8+ T lymphocytes target NS1, NS3 and NS5 in infected Indian rhesus macaques. Immunogenetics, 2012, 64, 111-121.	2.4	22
67	GagCM9-Specific CD8+ T Cells Expressing Limited Public TCR Clonotypes Do Not Suppress SIV Replication In Vivo. PLoS ONE, 2011, 6, e23515.	2.5	11
68	Macaque Long-Term Nonprogressors Resist Superinfection with Multiple CD8+ T Cell Escape Variants of Simian Immunodeficiency Virus. Journal of Virology, 2011, 85, 530-541.	3.4	14
69	The live-attenuated yellow fever vaccine 17D induces broad and potent T cell responses against several viral proteins in Indian rhesus macaques—implications for recombinant vaccine design. Immunogenetics, 2010, 62, 593-600.	2.4	16
70	Ex vivo analysis of SIVâ€infected cells by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 1059-1066.	1.5	6
71	High Viremia Is Associated with High Levels of <i>In Vivo</i> Major Histocompatibility Complex Class I Downregulation in Rhesus Macaques Infected with Simian Immunodeficiency Virus SIVmac239. Journal of Virology, 2010, 84, 5443-5447.	3.4	12
72	Integrin α4β7 Is Downregulated on the Surfaces of Simian Immunodeficiency Virus SIVmac239-Infected Cells. Journal of Virology, 2010, 84, 6344-6351.	3.4	9

#	Article	IF	CITATIONS
73	Effective Simian Immunodeficiency Virus-Specific CD8 ⁺ T Cells Lack an Easily Detectable, Shared Characteristic. Journal of Virology, 2010, 84, 753-764.	3.4	19
74	Recombinant Yellow Fever Vaccine Virus 17D Expressing Simian Immunodeficiency Virus SIVmac239 Gag Induces SIV-Specific CD8 ⁺ T-Cell Responses in Rhesus Macaques. Journal of Virology, 2010, 84, 3699-3706.	3.4	49
75	Broadly Neutralizing Monoclonal Antibodies 2F5 and 4E10 Directed against the Human Immunodeficiency Virus Type 1 gp41 Membrane-Proximal External Region Protect against Mucosal Challenge by Simian-Human Immunodeficiency Virus SHIV _{Ba-L} . Journal of Virology, 2010, 84, 1302-1313.	3.4	296
76	CD8+ gamma-delta TCR+ and CD4+ T cells produce IFN-γ at 5–7 days after yellow fever vaccination in Indian rhesus macaques, before the induction of classical antigen-specific T cell responses. Vaccine, 2010, 28, 8183-8188.	3.8	29
77	Novel Translation Products from Simian Immunodeficiency Virus SIVmac239 Env-Encoding mRNA Contain both Rev and Cryptic T-Cell Epitopes. Journal of Virology, 2009, 83, 10280-10285.	3.4	10
78	Vaccine-Induced Cellular Responses Control Simian Immunodeficiency Virus Replication after Heterologous Challenge. Journal of Virology, 2009, 83, 6508-6521.	3.4	123
79	Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers. PLoS Pathogens, 2009, 5, e1000433.	4.7	475
80	Infection with "Escaped―Virus Variants Impairs Control of Simian Immunodeficiency Virus SIVmac239 Replication in <i>Mamu-B*08</i> -Positive Macaques. Journal of Virology, 2009, 83, 11514-11527.	3.4	53
81	Macaques vaccinated with live-attenuated SIV control replication of heterologous virus. Journal of Experimental Medicine, 2008, 205, 2537-2550.	8.5	139
82	Genital Ulcers Facilitate Rapid Viral Entry and Dissemination following Intravaginal Inoculation with Cell-Associated Simian Immunodeficiency Virus SIVmac239. Journal of Virology, 2008, 82, 4154-4158.	3.4	40
83	Recognition of Escape Variants in ELISPOT Does Not Always Predict CD8+ T-Cell Recognition of Simian Immunodeficiency Virus-Infected Cells Expressing the Same Variant Sequences. Journal of Virology, 2008, 82, 575-581.	3.4	40
84	Patterns of CD8 ⁺ Immunodominance May Influence the Ability of <i>Mamu</i> - <i>B</i> * <i>08</i> -Positive Macaques To Naturally Control Simian Immunodeficiency Virus SIVmac239 Replication. Journal of Virology, 2008, 82, 1723-1738.	3.4	83
85	Allogeneic Lymphocytes Persist and Traffic in Feral MHC-Matched Mauritian Cynomolgus Macaques. PLoS ONE, 2008, 3, e2384.	2.5	25
86	Not All Cytokine-Producing CD8 + T Cells Suppress Simian Immunodeficiency Virus Replication. Journal of Virology, 2007, 81, 1517-1523.	3.4	30
87	Subdominant CD8 + T-Cell Responses Are Involved in Durable Control of AIDS Virus Replication. Journal of Virology, 2007, 81, 3465-3476.	3.4	199
88	The Antiviral Efficacy of Simian Immunodeficiency Virus-Specific CD8 + T Cells Is Unrelated to Epitope Specificity and Is Abrogated by Viral Escape. Journal of Virology, 2007, 81, 2624-2634.	3.4	67
89	AIDS virus–specific CD8+ T lymphocytes against an immunodominant cryptic epitope select for viral escape. Journal of Experimental Medicine, 2007, 204, 2505-2512.	8.5	48
90	Gag-Specific CD8+ T Lymphocytes Recognize Infected Cells before AIDS-Virus Integration and Viral Protein Expression. Journal of Immunology, 2007, 178, 2746-2754.	0.8	247

#	Article	IF	CITATIONS
91	Repeated Intravaginal Inoculation with Cellâ€Associated Simian Immunodeficiency Virus Results in Persistent Infection of Nonhuman Primates. Journal of Infectious Diseases, 2006, 194, 912-916.	4.0	51
92	Vaccine-Induced Cellular Immune Responses Reduce Plasma Viral Concentrations after Repeated Low-Dose Challenge with Pathogenic Simian Immunodeficiency Virus SIVmac239. Journal of Virology, 2006, 80, 5875-5885.	3.4	237
93	Novel simian immunodeficiency virus CTL epitopes restricted by MHC class I molecule Mamu-B*01 are highly conserved for long term in DNA/MVA-vaccinated, SHIV-challenged rhesus macaques. International Immunology, 2005, 17, 637-648.	4.0	9
94	CD8 + T-Lymphocyte Response to Major Immunodominant Epitopes after Vaginal Exposure to Simian Immunodeficiency Virus: Too Late and Too Little. Journal of Virology, 2005, 79, 9228-9235.	3.4	153
95	Tat 28-35 SL8-Specific CD8 + T Lymphocytes Are More Effective than Gag 181-189 CM9-Specific CD8 + T Lymphocytes at Suppressing Simian Immunodeficiency Virus Replication in a Functional In Vitro Assay. Journal of Virology, 2005, 79, 14986-14991.	3.4	53
96	Vγ2 TCR Repertoire Overlap in Different Anatomical Compartments of Healthy, Unrelated Rhesus Macaques. Journal of Immunology, 2001, 166, 2296-2302.	0.8	17
97	Importance of the CD3 marker for evaluating changes in rhesus macaque CD4/CD8 T-cell ratios. , 2000, 40, 69-75.		29
98	gammadelta T cell receptor repertoire in blood and colonic mucosa of rhesus macaques. Journal of Medical Primatology, 2000, 29, 387-396.	0.6	32
99	Activation features of intraepithelial γδT-cells of the murine vagina. Immunology Letters, 1996, 54, 129-134.	2.5	15
100	The effect of WSEWS pentapeptide and WSEWS-specific monoclonal antibodies on constitutive and IL-6 induced acute-phase protein production by a human hepatoma cell line, HEPG-2. Immunology Letters, 1995, 46, 183-187.	2.5	10
101	Separate regulation of a membrane protein, gp130, present in receptor complex specific for interleukin-6 and other functionally related cytokines. Journal of Molecular Recognition, 1994, 7, 277-281.	2.1	6
102	Modulation of cytosine arabinoside-induced proliferation inhibition by exogenous adenosylmethionine. Cancer Chemotherapy and Pharmacology, 1991, 28, 484-486.	2.3	0