Tianxiang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1531650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thiolation behaviors of methanol catalyzed by bifunctional ZSM-5@t-ZrO2 catalyst. Catalysis Today, 2022, 397-399, 379-388.	4.4	8
2	Water behavior of current jet fuel versus operating conditions: Storage time, temperature, relative humidity and anti-icing agent. Fuel, 2022, 309, 122088.	6.4	8
3	Microporous triazine-based ionic hyper-crosslinked polymers for efficient and selective separation of H2S/CH4/N2. Separation and Purification Technology, 2022, 285, 120377.	7.9	16
4	Facile preparation of N-doped porous carbon from chitosan and NaNH2 for CO2 adsorption and conversion. Chemical Engineering Journal, 2022, 432, 134347.	12.7	57
5	Effective absorption of <scp>SO₂</scp> by imidazoleâ€based protic ionic liquids with multiple active sites: Thermodynamic and mechanical studies. AICHE Journal, 2022, 68, .	3.6	27
6	Solvent-free synthesis of Rh/meso-Al2O3 via mechanochemistry for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2022, 47, 5230-5239.	7.1	11
7	Effective synthesis of cyclic carbonates from CO2 and epoxides catalyzed by acetylcholine bromide-based deep eutectic solvents. Journal of CO2 Utilization, 2022, 58, 101936.	6.8	16
8	Linker functionalized poly(heptazine imide) as charge channel and activation site for enhancing photocatalytic nitrogen fixation in pure water. Applied Catalysis B: Environmental, 2022, 311, 121370.	20.2	33
9	Straightforward construction of amino-functionalized ILs@SBA-15 catalysts via mechanochemical grafting for one-pot synthesis of cyclic carbonates from aromatic olefins and CO2. Journal of CO2 Utilization, 2022, 59, 101962.	6.8	17
10	Mechanochemical synthesis of carbene copper complexes for CO2 hydrogenation to formate. Journal of CO2 Utilization, 2022, 59, 101963.	6.8	2
11	Rapid mechanochemical construction of HKUST-1 with enhancing water stability by hybrid ligands assembly strategy for efficient adsorption of SF6. Chemical Engineering Journal, 2022, 437, 135364.	12.7	25
12	Deep eutectic solvents with multiple hydroxyl sites for efficient and reversible absorption of SF6. Journal of Molecular Liquids, 2022, 356, 119052.	4.9	2
13	Rich Ether-Based Protic Ionic Liquids with Low Viscosity for Selective Absorption of SO ₂ through Multisite Interaction. Industrial & Engineering Chemistry Research, 2022, 61, 5971-5983.	3.7	16
14	Role of Zirconia in Oxide-Zeolite Composite for Thiolation of Methanol with Hydrogen Sulfide to Methanethiol. Nanomaterials, 2022, 12, 1803.	4.1	0
15	Agile Construction of Porous Organic Frameworks Pending Carboxylic Acids and Imidazolium-Based Ionic Liquids for the Efficient Fixation of CO ₂ to Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2022, 10, 7990-8001.	6.7	16
16	Reductive amination of ketones/aldehydes with amines using BH3N(C2H5)3 as a reductant. Chemical Communications, 2021, 57, 8588-8591.	4.1	10
17	Linkage engineering mediated carriers transfer and surface reaction over carbon nitride for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2021, 9, 21732-21740.	10.3	25
18	Binary System of Polyethylene Glycol 200 (1) + 3-Dimethylamino-1-propylamine (2) for CO ₂ Absorption: Thermophysical Properties and Spectroscopic Study. ACS Omega, 2021, 6, 9898-9909.	3.5	1

#	Article	IF	CITATIONS
19	An indirect CO2 utilization for the crystallization control of CaCO3 using alkylcarbonate. Journal of CO2 Utilization, 2021, 45, 101448.	6.8	14
20	Base-assisted transfer hydrogenation of CO2 to formate with ammonia borane in water under mild conditions. International Journal of Hydrogen Energy, 2021, 46, 15716-15723.	7.1	11
21	Density, Viscosity, and Spectroscopic Nature for the Binary System of Tetraethylene Glycol (1) + Water (2) T = (298.15 to 323.15) K. International Journal of Thermophysics, 2021, 42, 1.	2.1	2
22	Deep Eutectic Solvents as Efficient Catalysts for Fixation of CO ₂ to Cyclic Carbonates at Ambient Temperature and Pressure through Synergetic Catalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 10437-10443.	6.7	55
23	Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure. Molecular Catalysis, 2021, 511, 111756.	2.0	19
24	Superior ZSM-5@Î ³ -Al ₂ O ₃ Composite Catalyst for Methanol and Ethanol Coconversion to Light Olefins. ACS Omega, 2021, 6, 19067-19075.	3.5	5
25	Catalyst-free hierarchical reduction of CO2 with BH3N(C2H5)3 for selective N-methylation and N-formylation of amines. Journal of CO2 Utilization, 2021, 50, 101590.	6.8	10
26	Imidazolium- and triazine-based ionic polymers as recyclable catalysts for efficient fixation of CO2 into cyclic carbonates. Journal of CO2 Utilization, 2021, 51, 101658.	6.8	22
27	CO2 hydrogenation to lower olefins over Mn2O3-ZnO/SAPO-34 tandem catalysts. Chemical Engineering Journal, 2021, 421, 129978.	12.7	41
28	Deep eutectic solvents formed by EmimCl plus lactams: Effective SO2 capture and conversion into sulphur via DESs-mediated Claus process. Chemical Engineering Journal, 2021, 422, 130033.	12.7	28
29	Correction to "Deep eutectic solvents formed by EmimCl plus lactams: Effective SO2 capture and conversion into sulphur via DESs-mediated Claus process― Chemical Engineering Journal, 2021, 425, 130513.	12.7	1
30	Unsaturated iron ion-based coordination polymer for highly efficient photocatalytic hydrogen evolution with simultaneous real wastewater degradation: mechanistic insight into multifunctional Fe–N sites. Journal of Materials Chemistry A, 2021, 9, 27041-27048.	10.3	11
31	Synthesis of Mesoporous Pd _{<i>x</i>} Cu _{1–<i>x</i>} /Al ₂ O ₃ - <i>y</i> Bimetallic Catalysts Via Mechanochemistry for Selective <i>N</i> -Formylation of Amines with CO ₂ and H ₂ ACS Sustainable Chemistry and Engineering 2021 9 16153-16162	6.7	9
32	Highly Efficient Absorption of CO ₂ by Protic Ionic Liquids-Amine Blends at High Temperatures. ACS Omega, 2021, 6, 34027-34034.	3.5	19
33	Polyethyleneimine-Modified Amorphous Silica for the Selective Adsorption of CO ₂ /N ₂ at High Temperatures. ACS Omega, 2021, 6, 35389-35397.	3.5	5
34	Deep eutectic solvents consisting of EmimCl and amides: Highly efficient SO2 absorption and conversion. Separation and Purification Technology, 2020, 250, 117273.	7.9	38
35	Promoted catalytic behavior over Î ³ -Al2O3 composited with ZSM-5 for crude methanol conversion to dimethyl ether. International Journal of Hydrogen Energy, 2020, 45, 16500-16508.	7.1	26
36	High selectivity in methanethiol synthesis over a coated composite comprising ZSM-5 with t-ZrO2. Microporous and Mesoporous Materials, 2020, 305, 110358.	4.4	4

#	Article	IF	CITATIONS
37	Bisazole-Based Deep Eutectic Solvents for Efficient SO ₂ Absorption and Conversion without Any Additives. ACS Sustainable Chemistry and Engineering, 2020, 8, 2608-2613.	6.7	60
38	Catalyst-free selective <i>N</i> -formylation and <i>N</i> -methylation of amines using CO ₂ as a sustainable C1 source. Green Chemistry, 2020, 22, 1134-1138.	9.0	51
39	Deep eutectic solvents consisting of 1-ethyl-3-methylimidazolium chloride and glycerol derivatives for highly efficient and reversible SO2 capture. Journal of Molecular Liquids, 2020, 302, 112538.	4.9	43
40	Imidazolium hydrogen carbonate ionic liquids: Versatile organocatalysts for chemical conversion of CO2 into valuable chemicals. Journal of CO2 Utilization, 2020, 39, 101155.	6.8	26
41	Hydrogenation of CO ₂ to Formate with H ₂ : Transition Metal Free Catalyst Based on a Lewis Pair. Angewandte Chemie, 2019, 131, 732-736.	2.0	15
42	Hydrogenation of CO ₂ to Formate with H ₂ : Transition Metal Free Catalyst Based on a Lewis Pair. Angewandte Chemie - International Edition, 2019, 58, 722-726.	13.8	66
43	Hydrogenation of CO 2 to Formate with H 2 : Transition Metal Free Catalyst Based on a Lewis Pair. Angewandte Chemie, 2018, 131, 649.	2.0	0
44	Tandem copper hydride–Lewis pair catalysed reduction of carbon dioxide into formate with dihydrogen. Nature Catalysis, 2018, 1, 743-747.	34.4	88
45	Friedel-Crafts Reaction of N,N-Dimethylaniline with Alkenes Catalyzed by Cyclic Diaminocarbene-Gold(I) Complex. Scientific Reports, 2018, 8, 11449.	3.3	9
46	Low-viscous diamino protic ionic liquids with fluorine-substituted phenolic anions for improving CO2 reversible capture. Journal of Molecular Liquids, 2018, 268, 617-624.	4.9	29
47	Unexpectedly efficient SO ₂ capture and conversion to sulfur in novel imidazole-based deep eutectic solvents. Chemical Communications, 2018, 54, 8964-8967.	4.1	77
48	Study on absorption and spectral properties of H2S in carboxylate protic ionic liquids with low viscosity. Journal of Molecular Liquids, 2018, 266, 806-813.	4.9	33
49	Efficient SO ₂ Capture and Fixation to Cyclic Sulfites by Dual Ether-Functionalized Protic Ionic Liquids without Any Additives. ACS Sustainable Chemistry and Engineering, 2018, 6, 10886-10895.	6.7	60
50	Synthesis of vaterite CaCO 3 micro-spheres by carbide slag and a novel CO 2 -storage material. Journal of CO2 Utilization, 2017, 18, 23-29.	6.8	37
51	Rapid Preparation of Ultrafine BaSO ₃ by SO ₂ Storage Material. Bulletin of the Korean Chemical Society, 2017, 38, 33-37.	1.9	0
52	Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol at Room Temperature Using Imidazolium Hydrogen Carbonate Ionic Liquid as a Recyclable Catalyst and Dehydrant. ChemSusChem. 2017. 10. 2046-2052.	6.8	83
53	Solubility of dilute SO 2 in binary system of polyethylene glycol 200 and dimethyl sulfoxide as a function of liquid composition and system's spectroscopic studies. Journal of Molecular Liquids, 2017, 225, 151-159.	4.9	7
54	Solubilities of Dilute SO2 in the Binary System of Glycol and Dimethylsulfoxide. Journal of Solution Chemistry, 2017, 46, 1522-1534.	1.2	5

#	Article	IF	CITATIONS
55	Density, viscosity and excess properties for the binary system 2-butoxy ethanol + water at <i>T</i> = (298.15–318.15) K and mixture's spectroscopic studies. Physics and Chemistry of Liquids, 2017, 55, 589-604.	1.2	6
56	A novel SO2 capture, storage and utilisation to prepare BaSO3 micro-particles. Materials Research Innovations, 2017, 21, 320-324.	2.3	1
57	Excess properties and spectroscopic studies for binary system of polyethylene glycol 600 + 1,2-ethanediamine at T= (298.15, 303.15, 308.15, 313.15, and 318.15) K. Journal of Molecular Liquids, 2016, 219 149-157.	,4.9	19
58	Controllable Synthesis of Various CaCO ₃ Morphologies Based on a CCUS Idea. ACS Sustainable Chemistry and Engineering, 2016, 4, 3032-3044.	6.7	37
59	Solubility and Spectral Investigation of Dilute SO2 in the Binary System Polyethylene Glycol 600 + Water and System's Density, Viscosity, and Surface Tension. Journal of Molecular Liquids, 2016, 223, 224-234.	4.9	9
60	Highly Efficient CO ₂ Capture to a New-Style CO ₂ -Storage Material. Energy & Fuels, 2016, 30, 6555-6560.	5.1	26
61	Solubility and Spectral Studies for SO ₂ in a Binary System of Triethylene Glycol + Dimethyl Sulfoxide at <i>T</i> = (298.15, 303.15, and 308.15) K and <i>p</i> = 123.15 kPa. Journal of Chemical & Engineering Data, 2016, 61, 1597-1607.	1.9	10
62	A novel CCU approach of CO2 by the system 1,2-ethylenediamine+1,2-ethylene glycol. Korean Journal of Chemical Engineering, 2016, 33, 1883-1888.	2.7	13
63	Facile preparation of micro and nano-sized CaCO3 particles by a new CO2-storage material. Powder Technology, 2016, 301, 463-471.	4.2	16
64	Gas–liquid equilibrium data for mixture gas of carbon dioxide + nitrogen in 1,2-ethanediamine + triethylene glycol aqueous solution. Physics and Chemistry of Liquids, 2016, , 1-8.	1.2	0
65	Excess properties and spectroscopic studies of binary system of 1-methoxy-2-propanol + dimethyl sulfoxide at <i>T</i> = (298.15–318.15) K. Physics and Chemistry of Liquids, 2016, 54, 411-421.	1.2	8
66	Excess properties and spectroscopic studies of binary system 1,4-butanediol + water at <i>T</i> = (293.15, 298.15, 303.15, 308.15, 313.15 and 318.15) K. Physics and Chemistry of Liquids, 2016, 54, 165-181.	1.2	17
67	CO ₂ Fixation into Novel CO ₂ Storage Materials Composed of 1,2â€Ethanediamine and Ethylene Glycol Derivatives. ChemPhysChem, 2015, 16, 2106-2109.	2.1	39
68	Density, viscosity and spectroscopic studies of the binary system 1,2-ethylenediamine+1,4-butanediol at T=(293.15 to 318.15) K. Journal of Molecular Liquids, 2015, 208, 373-379.	4.9	31
69	Absorption, desorption and spectroscopic investigation of sulfur dioxide in the binary system ethylene glycol+dimethyl sulfoxide. Fluid Phase Equilibria, 2015, 405, 7-16.	2.5	20
70	Excess Properties and Spectroscopic Studies for Binary System of Polyethylene Glycol 200 (1) + Dimethyl Sulfoxide (2) at <i>T</i> = (298.15 to 318.15) K. Journal of Chemical & Engineering Data, 2015, 60, 2135-2145.	1.9	11
71	Morphology Control in the Synthesis of CaCO ₃ Microspheres with a Novel CO ₂ -Storage Material. ACS Applied Materials & Interfaces, 2015, 7, 15918-15927.	8.0	43
72	Density, viscosity and spectroscopic studies of the binary system of ethylene glycol+dimethyl sulfoxide at T=(298.15 to 323.15) K. Journal of Molecular Liquids, 2015, 207, 315-322.	4.9	73

#	Article	IF	CITATIONS
73	Control over crystallization of CaCO ₃ micro-particles by a novel CO ₂ SM. CrystEngComm, 2015, 17, 7896-7904.	2.6	17
74	Excess properties and spectral studies for binary system tri-ethylene glycol + dimethyl sulfoxide. Journal of Molecular Liquids, 2015, 212, 187-195.	4.9	27
75	Synthesis and Structural Characterizations of meso-Tetraphenyl Porphyrin. Asian Journal of Chemistry, 2014, 26, 3050-3052.	0.3	1
76	Kinetic Studies of Metalloporphyrins Bonding with Nitric Oxide. Asian Journal of Chemistry, 2014, 26, 5255-5258.	0.3	2
77	Excess properties and viscous flow thermodynamics of the binary system 1,2-ethanediamine+triethylene glycol at T=(298.15, 303.15, 308.15, and 313.15) K for CO2 capture. Korean Journal of Chemical Engineering, 2014, 31, 2245-2250.	2.7	22
78	Density, viscosity, surface tension, and spectroscopic properties for binary system of 1,2-ethanediamine+diethylene glycol. Thermochimica Acta, 2014, 590, 91-99.	2.7	56
79	Excess properties and spectroscopic studies for the binary system 1,2-ethanediamine+polyethylene glycol 300 at T=(293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K. Journal of Molecular Liquids, 2014, 198 21-29.	3, 4.9	30