Augustine Kong

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/1529848/publications.pdf
Version: 2024-02-01
46
papers
\square 1 Finding the missing heritability of complex diseases. Nature, 2009, 461, 747-753.
27.8

7,490

2 Rate of de novo mutations and the importance of fatherâ $€^{\mathrm{TM}} \mathrm{S}$ age to disease risk. Nature, 2012, 488, 471-475. $27.8 \quad 1,880$

3	A high-resolution recombination map of the human genome. Nature Genetics, 2002, 31, 241-247.	21.4	1,571
4	A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature, 2008, 452, 638-642.	27.8	1,399
5	Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genetics, 2009, 41, 18-24.	21.4	1,247
6	Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 2016, 533, 539-542.	27.8	1,204
7	Allegro, a new computer program for multipoint linkage analysis. Nature Genetics, 2000, 25, 12-13.	21.4	737

$8 \quad$ The nature of nurture: Effects of parental genotypes. Science, 2018, 359, 424-428.
12.6

720

9 Sequential Imputations and Bayesian Missing Data Problems. Journal of the American Statistical
9 Association, 1994, 89, 278-288.

10 Large-scale whole-genome sequencing of the Icelandic population. Nature Genetics, 2015, 47, 435-444.
21.4

663

11 Many sequence variants affecting diversity of adult human height. Nature Genetics, 2008, 40, 609-615.
21.4

615

12 An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.

Fine-scale recombination rate differences between sexes, populations and individuals. Nature, 2010,
467, 1099-1103.

14 Parental origin of sequence variants associated with complex diseases. Nature, 2009, 462, 868-874.
27.8

521

15 Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics, 2014, 46,
$357-363$.

Detection of sharing by descent, long-range phasing and haplotype imputation. Nature Genetics, 2008, 40, 1068-1075.

Identification of low-frequency and rare sequence variants associated with elevated or reduced risk
of type 2 diabetes. Nature Genetics, 2014, 46, 294-298.
21.4
Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics,
$2016,48,1462-1472$.

Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nature Genetics, 2015, 47,

23	Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 2022, 54, 437-449.	21.4	215
24	Identification of a large set of rare complete human knockouts. Nature Genetics, 2015, 47, 448-452.	21.4	214
25	A gene defect that causes conduction system disease and dilated cardiomyopathy maps to chromosome lplâ€"1q1. Nature Genetics, 1994, 7, 546-551.	21.4	187

26 Recombination rate and reproductive success in humans. Nature Genetics, 2004, 36, 1203-1206.

27	Deconstructing the sources of genotype-phenotype associations in humans. Science, 2019, 365, 1396-1400.	12.6	170
28	Selection against variants in the genome associated with educational attainment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E727-E732.	7.1	149
29	Relatedness disequilibrium regression estimates heritability without environmental bias. Nature Genetics, 2018, 50, 1304-1310.	21.4	147
30	Common and low-frequency variants associated with genome-wide recombination rate. Nature Genetics, 2014, 46, 11-16.	21.4	116
31	A frameshift deletion in the sarcomere gene <i>MYL4</i>causes early-onset familial atrial fibrillation. European Heart Journal, 2017, 38, 27-34.	2.2	89

32 Sequence variants from whole genome sequencing a large group of Icelanders. Scientific Data, 2015, 2,
0.7

57

Rare mutations associating with serum creatinine and chronic kidney disease. Human Molecular

$$
\begin{aligned}
& \text { Reply to â€œA call for accurate phenotype definition in the study of complex disordersâ€: Nature } \\
& \text { Genetics, 2004, 36, 3-4. }
\end{aligned}
$$

