Giorgio Vallortigara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1529532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light-incubation effects on lateralisation of single unit responses in the visual Wulst of domestic chicks. Brain Structure and Function, 2022, 227, 497-513.	2.3	14
2	Towards a standardization of non-symbolic numerical experiments: GeNEsIS, a flexible and user-friendly tool to generate controlled stimuli. Behavior Research Methods, 2022, 54, 146-157.	4.0	13
3	Neurons in the Dorso-Central Division of Zebrafish Pallium Respond to Change in Visual Numerosity. Cerebral Cortex, 2022, 32, 418-428.	2.9	21
4	Archerfish number discrimination. ELife, 2022, 11, .	6.0	18
5	Characterizing ontogeny of quantity discrimination in zebrafish. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212544.	2.6	9
6	Young domestic chicks spontaneously represent the absence of objects. ELife, 2022, 11, .	6.0	3
7	Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Scientific Reports, 2022, 12, .	3.3	4
8	A sense of number in invertebrates. Biochemical and Biophysical Research Communications, 2021, 564, 37-42.	2.1	38
9	Asymmetric distribution of pallialâ€expressed genes in zebrafish (<i>Danio rerio</i>). European Journal of Neuroscience, 2021, 53, 362-375.	2.6	10
10	Behavioural Laterality in two species of flamingos: greater flamingos and Chilean flamingos. Laterality, 2021, 26, 34-54.	1.0	4
11	Response of male and female domestic chicks to change in the number (quantity) of imprinting objects. Learning and Behavior, 2021, 49, 54-66.	1.0	8
12	Paw preference in wolves (Canis lupus): A preliminary study using manipulative tasks. Laterality, 2021, 26, 130-143.	1.0	0
13	Laterality for the next decade: Computational ethology and the search for minimal condition for cognitive asymmetry. Laterality, 2021, 26, 303-306.	1.0	6
14	Newborns' sensitivity to speed changes as a building block for animacy perception. Scientific Reports, 2021, 11, 542.	3.3	25
15	<i>Dlk1</i> dosage regulates hippocampal neurogenesis and cognition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
16	Brain and behavioural asymmetries in non-human species. Laterality, 2021, 26, v-vii.	1.0	8
17	Stability and individual variability of social attachment in imprinting. Scientific Reports, 2021, 11, 7914.	3.3	16
18	Resurgence of an Inborn Attraction for Animate Objects via Thyroid Hormone T3. Frontiers in Behavioral Neuroscience, 2021, 15, 675994.	2.0	10

#	Article	IF	CITATIONS
19	Numerosities and Other Magnitudes in the Brains: A Comparative View. Frontiers in Psychology, 2021, 12, 641994.	2.1	18
20	Preliminary investigation of foot preference for a string-pulling task in zoo macaws. Applied Animal Behaviour Science, 2021, 238, 105307.	1.9	4
21	Lateralized Declarative-Like Memory for Conditional Spatial Information in Domestic Chicks (Gallus) Tj ETQq1	1 0.784314 2.2	rgBT /Overlo
22	Rethinking cognition: From animal to minimal. Biochemical and Biophysical Research Communications, 2021, 564, 1-3.	2.1	2
23	Evolutionary and Neural Bases of the Sense of Animacy. , 2021, , 295-321.		11
24	Steps towards a computational ethology: an automatized, interactive setup to investigate filial imprinting and biological predispositions. Biological Cybernetics, 2021, 115, 575-584.	1.3	5
25	Abnormal visual attention to simple social stimuli in 4-month-old infants at high risk for Autism. Scientific Reports, 2021, 11, 15785.	3.3	7
26	Sensitive periods for social development: Interactions between predisposed and learned mechanisms. Cognition, 2021, 213, 104552.	2.2	38
27	The Sense of Number in Fish, with Particular Reference to Its Neurobiological Bases. Animals, 2021, 11, 3072.	2.3	9
28	The Efference Copy Signal as a Key Mechanism for Consciousness. Frontiers in Systems Neuroscience, 2021, 15, 765646.	2.5	8
29	Efficient Artifact Removal from Low-Density Wearable EEG using Artifacts Subspace Reconstruction. , 2021, 2021, 333-336.		11
30	Low-rank Gallus gallus domesticus chicks are better at transitive inference reasoning. Communications Biology, 2021, 4, 1344.	4.4	6
31	Obituary for Professor Richard J.ÂAndrew, 1932–2018. Laterality, 2020, 25, 393-404.	1.0	0
32	The use of spatial and local cues for orientation in domestic chicks (Gallus gallus). Animal Cognition, 2020, 23, 367-387.	1.8	14
33	A function for the bicameral mind. Cortex, 2020, 124, 274-285.	2.4	81
34	Distinct and combined responses to environmental geometry and features in a working-memory reorientation task in rats and chicks. Scientific Reports, 2020, 10, 7508.	3.3	8
35	The rose and the fly. A conjecture on the origin of consciousness. Biochemical and Biophysical Research Communications, 2020, 564, 170-174.	2.1	8
36	Statistical learning in domestic chicks is modulated by strain and sex. Scientific Reports, 2020, 10, 15140.	3.3	11

#	Article	IF	CITATIONS
37	Transfer from Number to Size Reveals Abstract Coding of Magnitude in Honeybees. IScience, 2020, 23, 101122.	4.1	28
38	Received Cradling Bias During the First Year of Life: A Retrospective Study on Children With Typical and Atypical Development. Frontiers in Psychiatry, 2020, 11, 91.	2.6	20
39	Righting behaviour in the European pond turtle (Emys orbicularis): relations between behavioural and morphological lateralization. Animal Cognition, 2020, 23, 989-998.	1.8	1
40	Editorial: Avian Models for Social Cohesion. Frontiers in Physiology, 2020, 10, 1533.	2.8	0
41	Brain and Behavioral Asymmetry: A Lesson From Fish. Frontiers in Neuroanatomy, 2020, 14, 11.	1.7	41
42	Response to change in the number of visual stimuli in zebrafish:A behavioural and molecular study. Scientific Reports, 2020, 10, 5769.	3.3	37
43	Numerical magnitude, rather than individual bias, explains spatial numerical association in newborn chicks. ELife, 2020, 9, .	6.0	20
44	Phenotypes in hemispheric functional segregation as by-products of the evolution of lateralization population structure. Physics of Life Reviews, 2019, 30, 38-40.	2.8	3
45	Distinct effect of early and late embryonic light-stimulation on chicks' lateralization. Neuroscience, 2019, 414, 1-7.	2.3	25
46	Selective response of the nucleus taeniae of the amygdala to a naturalistic social stimulus in visually naive domestic chicks. Scientific Reports, 2019, 9, 9849.	3.3	26
47	Effects of oxytocinâ€ f amily peptides and substance P on locomotor activity and filial preferences in visually naÃ⁻ve chicks. European Journal of Neuroscience, 2019, 50, 3674-3687.	2.6	16
48	Unlearned visual preferences for the head region in domestic chicks. PLoS ONE, 2019, 14, e0222079.	2.5	14
49	Discrimination of group numerousness under predation risk in anuran tadpoles. Animal Cognition, 2019, 22, 223-230.	1.8	17
50	A mental number line in human newborns. Developmental Science, 2019, 22, e12801.	2.4	67
51	Embryonic Exposure to Valproic Acid Affects Social Predispositions for Dynamic Cues of Animate Motion in Newly-Hatched Chicks. Frontiers in Physiology, 2019, 10, 501.	2.8	31
52	Spontaneous and light-induced lateralization of immediate early genes expression in domestic chicks. Behavioural Brain Research, 2019, 368, 111905.	2.2	21
53	Complementary Specializations of the Left and Right Sides of the Honeybee Brain. Frontiers in Psychology, 2019, 10, 280.	2.1	42
54	Cortical route for facelike pattern processing in human newborns. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4625-4630.	7.1	112

#	Article	IF	CITATIONS
55	Visual Lateralization in the Cephalopod Mollusk Octopus vulgaris. Symmetry, 2019, 11, 1121.	2.2	17
56	Use of numerical and spatial information in ordinal counting by zebrafish. Scientific Reports, 2019, 9, 18323.	3.3	25
57	A transient time window for early predispositions in newborn chicks. Scientific Reports, 2019, 9, 18767.	3.3	26
58	Inexperienced preys know when to flee or to freeze in front of a threat. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22918-22920.	7.1	24
59	NaÃ ⁻ ve 3-day-old domestic chicks (Gallus gallus) are attracted to discrete acoustic patterns characterizing natural vocalizations Journal of Comparative Psychology (Washington, D C: 1983), 2019, 133, 118-131.	0.5	5
60	Cognitive gadgets and cognitive priors. Behavioral and Brain Sciences, 2019, 42, e177.	0.7	0
61	â€~Mind' is an ill-defined concept: Considerations for future cephalopod research. Animal Sentience, 2019, 4, .	0.5	2
62	Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks. Scientific Reports, 2018, 8, 5919.	3.3	42
63	Introduction: The origins of numerical abilities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160507.	4.0	25
64	Comparative cognition of number and space: the case of geometry and of the mental number line. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170120.	4.0	49
65	Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus). Brain Structure and Function, 2018, 223, 941-953.	2.3	23
66	Individual-Level and Population-Level Lateralization: Two Sides of the Same Coin. Symmetry, 2018, 10, 739.	2.2	67
67	Continuous and discrete quantity discrimination in tortoises. Biology Letters, 2018, 14, 20180649.	2.3	49
68	Visual asymmetries in cuttlefish during brightness matching for camouflage. Current Biology, 2018, 28, R925-R926.	3.9	21
69	Motor asymmetries in fishes, amphibians, and reptiles. Progress in Brain Research, 2018, 238, 33-56.	1.4	37
70	Priors in Animal and Artificial Intelligence: Where Does Learning Begin?. Trends in Cognitive Sciences, 2018, 22, 963-965.	7.8	47
71	Spontaneous Learning of Visual Structures in Domestic Chicks. Animals, 2018, 8, 135.	2.3	12
72	The effect of clustering on perceived quantity in humans (Homo sapiens) and in chicks (Gallus gallus) Journal of Comparative Psychology (Washington, D C: 1983), 2018, 132, 280-293.	0.5	17

#	Article	IF	CITATIONS
73	Visual cues of motion that trigger animacy perception at birth: the case of selfâ€propulsion. Developmental Science, 2017, 20, e12394.	2.4	59
74	Spontaneous generalization of abstract multimodal patterns in young domestic chicks. Animal Cognition, 2017, 20, 521-529.	1.8	44
75	Dynamic features of animate motion activate septal and preoptic areas in visually naÃ ⁻ ve chicks (Gallus) Tj ETQq	1 1.0,7843 2.3	314 rgBT /O∨ 54
76	The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (<i>Gallus gallus</i>). European Journal of Neuroscience, 2017, 45, 423-432.	2.6	43
77	Experimental Evidence From Newborn Chicks Enriches Our Knowledge on Human Spatial–Numerical Associations. Cognitive Science, 2017, 41, 2275-2279.	1.7	4
78	Newborn chicks show inherited variability in early social predispositions for hen-like stimuli. Scientific Reports, 2017, 7, 40296.	3.3	41
79	Morphofunctional experience-dependent plasticity in the honeybee brain. Learning and Memory, 2017, 24, 622-629.	1.3	19
80	Filial responses as predisposed and learned preferences: Early attachment in chicks and babies. Behavioural Brain Research, 2017, 325, 90-104.	2.2	108
81	First exposure to an alive conspecific activates septal and amygdaloid nuclei in visually-naÃ ⁻ ve domestic chicks (Gallus gallus). Behavioural Brain Research, 2017, 317, 71-81.	2.2	54
82	Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models. Brain Sciences, 2017, 7, 17.	2.3	6
83	Early- and Late-Light Embryonic Stimulation Modulates Similarly Chicks' Ability to Filter out Distractors. Symmetry, 2017, 9, 84.	2.2	17
84	Distribution of Antennal Olfactory and Non-Olfactory Sensilla in Different Species of Bees. Symmetry, 2017, 9, 135.	2.2	11
85	Laterality at the neural, cognitive, and behavioral levels , 2017, , 557-577.		64
86	Response: "Newborn chicks need no number tricks. Commentary: Number-space mapping in the newborn chick resembles humans' mental number line― Frontiers in Human Neuroscience, 2016, 10, 31.	2.0	10
87	Unsupervised statistical learning in newly hatched chicks. Current Biology, 2016, 26, R1218-R1220.	3.9	28
88	Difference in Visual Social Predispositions Between Newborns at Low- and High-risk for Autism. Scientific Reports, 2016, 6, 26395.	3.3	80
89	Ratio abstraction over discrete magnitudes by newly hatched domestic chicks (Gallus gallus). Scientific Reports, 2016, 6, 30114.	3.3	23
90	Differential Odour Coding of Isotopomers in the Honeybee Brain. Scientific Reports, 2016, 6, 21893.	3.3	22

#	Article	IF	CITATIONS
91	Generalization of visual regularities in newly hatched chicks (Gallus gallus). Animal Cognition, 2016, 19, 1007-1017.	1.8	12
92	Hippocampus and medial striatum dissociation during goal navigation by geometry or features in the domestic chick: An immediate early gene study. Hippocampus, 2016, 26, 27-40.	1.9	41
93	Motor and postural asymmetries in marsupials: Forelimb preferences in the red-necked wallaby (Macropus rufogriseus). Behavioural Processes, 2016, 128, 119-125.	1.1	4
94	Mapping number to space in the two hemispheres of the avian brain. Neurobiology of Learning and Memory, 2016, 133, 13-18.	1.9	23
95	NaÃ ⁻ ve Chicks Prefer Hollow Objects. PLoS ONE, 2016, 11, e0166425.	2.5	36
96	Quantity discrimination by zebrafish (Danio rerio) Journal of Comparative Psychology (Washington,) Tj ETQq0 C	0 rgBT /C	overlock 10 Tf
97	When and Why Did Brains Break Symmetry?. Symmetry, 2015, 7, 2181-2194.	2.2	82
98	Origins of Knowledge: Insights from Precocial Species. Frontiers in Behavioral Neuroscience, 2015, 9, 338.	2.0	56
99	Response to Comments on "Number-space mapping in the newborn chick resembles humans' mental number line― Science, 2015, 348, 1438-1438.	12.6	15
100	The use of proportion by young domestic chicks (Gallus gallus). Animal Cognition, 2015, 18, 605-616.	1.8	17
101	Asymmetric neural coding revealed by <i>in vivo</i> calcium imaging in the honey bee brain. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142571.	2.6	43
102	Number-space mapping in the newborn chick resembles humans' mental number line. Science, 2015, 347, 534-536.	12.6	289
103	Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behavioural Brain Research, 2015, 290, 1-7.	2.2	31
104	Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization. Frontiers in Psychology, 2015, 6, 233.	2.1	99
105	Bumblebees spontaneously map location of conspecific using geometry and features. Learning and Motivation, 2015, 50, 32-38.	1.2	10
106	Foundations of Number and Space Representations in Non-Human Species. Advances in Mathematical Cognition and Learning, 2015, 1, 35-66.	0.5	11
107	Working memory and reference memory tests of spatial navigation in mice (Mus musculus) Journal of Comparative Psychology (Washington, D C: 1983), 2015, 129, 189-197.	0.5	21
108	Boundary primacy in spatial mapping: Evidence from zebrafish (Danio rerio). Behavioural Processes, 2015, 119, 116-122.	1.1	27

#	Article	IF	CITATIONS
109	Inexperienced newborn chicks use geometry to spontaneously reorient to an artificial social partner. Developmental Science, 2015, 18, 972-978.	2.4	23
110	Social environment elicits lateralized behaviors in gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes) Journal of Comparative Psychology (Washington, D C: 1983), 2014, 128, 276-284.	0.5	55
111	The Bee as a Model to Investigate Brain and Behavioural Asymmetries. Insects, 2014, 5, 120-138.	2.2	44
112	From small to large: Numerical discrimination by young domestic chicks (Gallus gallus) Journal of Comparative Psychology (Washington, D C: 1983), 2014, 128, 163-171.	0.5	50
113	One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Animal Cognition, 2013, 16, 557-564.	1.8	77
114	Navigation by environmental geometry: The use of zebrafish as a model. Journal of Experimental Biology, 2013, 216, 3693-9.	1.7	43
115	Discrimination of small quantities by fish (redtail splitfin, Xenotoca eiseni). Animal Cognition, 2013, 16, 307-312.	1.8	57
116	The cradle of causal reasoning: newborns' preference for physical causality. Developmental Science, 2013, 16, 327-335.	2.4	49
117	A right antenna for social behaviour in honeybees. Scientific Reports, 2013, 3, 2045.	3.3	95
118	Learning of geometry and features in bumblebees (Bombus terrestris) Journal of Comparative Psychology (Washington, D C: 1983), 2013, 127, 312-318.	0.5	20
119	Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Scientific Reports, 2013, 3, 2701.	3.3	59
120	Numerical Abstraction in Young Domestic Chicks (Gallus gallus). PLoS ONE, 2013, 8, e65262.	2.5	50
121	Chicks, like children, spontaneously reorient by three-dimensional environmental geometry, not by image matching. Biology Letters, 2012, 8, 492-494.	2.3	54
122	Spatial reorientation by geometry with freestanding objects and extended surfaces: a unifying view. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2228-2236.	2.6	31
123	Core knowledge of object, number, and geometry: A comparative and neural approach. Cognitive Neuropsychology, 2012, 29, 213-236.	1.1	140
124	Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behavioural Brain Research, 2012, 228, 133-143.	2.2	43
125	Target animacy influences chimpanzee handedness. Animal Cognition, 2012, 15, 1121-1127.	1.8	50
126	From natural geometry to spatial cognition. Neuroscience and Biobehavioral Reviews, 2012, 36, 799-824.	6.1	104

#	Article	IF	CITATIONS
127	Left–right asymmetries of behaviour and nervous system in invertebrates. Neuroscience and Biobehavioral Reviews, 2012, 36, 1273-1291.	6.1	273
128	Spatial Reorientation by Geometry in Bumblebees. PLoS ONE, 2012, 7, e37449.	2.5	19
129	Searching for anatomical correlates of olfactory lateralization in the honeybee antennal lobes: A morphological and behavioural study. Behavioural Brain Research, 2011, 221, 290-294.	2.2	30
130	Origins of brain asymmetry: Lateralization of odour memory recall in primitive Australian stingless bees. Behavioural Brain Research, 2011, 224, 121-127.	2.2	29
131	Asymmetrical number-space mapping in the avian brain. Neurobiology of Learning and Memory, 2011, 95, 231-238.	1.9	55
132	Summation of Large Numerousness by Newborn Chicks. Frontiers in Psychology, 2011, 2, 179.	2.1	53
133	Origins of Spatial, Temporal, and Numerical Cognition. , 2011, , 191-206.		1
134	The Evolution of Social Orienting: Evidence from Chicks (Gallus gallus) and Human Newborns. PLoS ONE, 2011, 6, e18802.	2.5	124
135	Target animacy influences gorilla handedness. Animal Cognition, 2011, 14, 903-907.	1.8	56
136	A multimodal approach for tracing lateralisation along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies. European Biophysics Journal, 2011, 40, 1247-1258.	2.2	25
137	Brain asymmetry (animal). Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 146-157.	2.8	182
138	Intuitive physical reasoning about occluded objects by inexperienced chicks. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2621-2627.	2.6	45
139	Lateralization in the Invertebrate Brain: Left-Right Asymmetry of Olfaction in Bumble Bee, Bombus terrestris. PLoS ONE, 2011, 6, e18903.	2.5	67
140	Faces are special for newly hatched chicks: evidence for inborn domainâ€specific mechanisms underlying spontaneous preferences for faceâ€like stimuli. Developmental Science, 2010, 13, 565-577.	2.4	131
141	Experience and geometry: controlled-rearing studies with chicks. Animal Cognition, 2010, 13, 463-470.	1.8	81
142	Imprinted numbers: newborn chicks' sensitivity to number vs. continuous extent of objects they have been reared with. Developmental Science, 2010, 13, 790-797.	2.4	69
143	Is it only humans that count from left to right?. Biology Letters, 2010, 6, 290-292.	2.3	126
144	Logic in an asymmetrical (social) brain: Transitive inference in the young domestic chick. Social Neuroscience, 2010, 5, 309-319.	1.3	51

#	Article	IF	CITATIONS
145	Innate sensitivity for self-propelled causal agency in newly hatched chicks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4483-4485.	7.1	153
146	Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behavioural Brain Research, 2010, 206, 236-239.	2.2	99
147	Response competition associated with right–left antennal asymmetries of new and old olfactory memory traces in honeybees. Behavioural Brain Research, 2010, 209, 36-41.	2.2	49
148	Morpho-functional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behavioural Brain Research, 2010, 209, 221-225.	2.2	85
149	Origins of spatial, temporal and numerical cognition: Insights from comparative psychology. Trends in Cognitive Sciences, 2010, 14, 552-560.	7.8	53
150	In-vivo two-photon imaging of the honey bee antennal lobe. Biomedical Optics Express, 2010, 2, 131-8.	2.9	20
151	Intraspecific competition and coordination in the evolution of lateralization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 861-866.	4.0	191
152	Arithmetic in newborn chicks. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2451-2460.	2.6	169
153	Doing Socrates experiment right: controlled rearing studies of geometrical knowledge in animals. Current Opinion in Neurobiology, 2009, 19, 20-26.	4.2	43
154	Origins of the Left & amp; Right Brain. Scientific American, 2009, 301, 60-67.	1.0	365
155	Effects of embryonic light stimulation on the ability to discriminate left from right in the domestic chick. Behavioural Brain Research, 2009, 198, 240-246.	2.2	26
156	Animals as Natural Geometers. , 2009, , 83-104.		41
157	Spatial reorientation in large and small enclosures: comparative and developmental perspectives. Cognitive Processing, 2008, 9, 229-238.	1.4	31
158	Discrimination of small numerosities in young chicks Journal of Experimental Psychology, 2008, 34, 388-399.	1.7	127
159	From Antenna to Antenna: Lateral Shift of Olfactory Memory Recall by Honeybees. PLoS ONE, 2008, 3, e2340.	2.5	131
160	Rudimental numerical competence in 5-day-old domestic chicks (Gallus gallus): Identification of ordinal position Journal of Experimental Psychology, 2007, 33, 21-31.	1.7	84
161	Chicks discriminate human gaze with their right hemisphere. Behavioural Brain Research, 2007, 177, 15-21.	2.2	40
162	Behavioural lateralization in sheep (Ovis aries). Behavioural Brain Research, 2007, 184, 72-80.	2.2	75

#	Article	IF	CITATIONS
163	Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment. Animal Cognition, 2007, 11, 139-146.	1.8	118
164	Chicks' use of geometrical and nongeometrical information in environments of different sizes. Cognitive Processing, 2006, 7, 24-26.	1.4	1
165	Gravity bias in the interpretation of biological motion by inexperienced chicks. Current Biology, 2006, 16, R279-R280.	3.9	151
166	The evolutionary psychology of left and right: Costs and benefits of lateralization. Developmental Psychobiology, 2006, 48, 418-427.	1.6	194
167	EMERGENCE OF GRAMMAR AS REVEALED BY VISUAL IMPRINTING IN NEWLY-HATCHED CHICKS. , 2006, , .		11
168	survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behavioral and Brain Sciences, 2005, 28, 575-589.	0.7	965
169	Reorientation by geometric and landmark information in environments of different size. Developmental Science, 2005, 8, 393-401.	2.4	71
170	A left-sided visuospatial bias in birds. Current Biology, 2005, 15, R372-R373.	3.9	135
171	Laterality in the wild: preferential hemifield use during predatory and sexual behaviour in the black-winged stilt. Animal Behaviour, 2005, 69, 1077-1084.	1.9	144
172	Delayed search for social and nonsocial goals by young domestic chicks, Gallus gallus domesticus. Animal Behaviour, 2005, 70, 855-864.	1.9	53
173	forming an asymmetrical brain: genes, environment, and evolutionarily stable strategies. Behavioral and Brain Sciences, 2005, 28, 615-623.	0.7	9
174	Effects of light stimulation of embryos on the use of position-specific and object-specific cues in binocular and monocular domestic chicks (Gallus gallus). Behavioural Brain Research, 2005, 163, 10-17.	2.2	45
175	Visually Inexperienced Chicks Exhibit Spontaneous Preference for Biological Motion Patterns. PLoS Biology, 2005, 3, e208.	5.6	283
176	The evolution of brain lateralization: a game-theoretical analysis of population structure. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 853-857.	2.6	290
177	Visual Cognition and Representation in Birds and Primates. , 2004, , 57-94.		57
178	Advantages of having a lateralized brain. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S420-2.	2.6	423
179	Separate processing mechanisms for encoding of geometric and landmark information in the avian hippocampus. European Journal of Neuroscience, 2003, 17, 1695-1702.	2.6	127
180	Visual lateralisation in quails (<i>Coturnix coturnix</i>). Laterality, 2003, 8, 67-78.	1.0	79

#	Article	lF	CITATIONS
181	Lateralisation of predator avoidance responses in three species of toads. Laterality, 2002, 7, 163-183.	1.0	204
182	Conjoining information from different modules: A comparative perspective. Behavioral and Brain Sciences, 2002, 25, 701-702.	0.7	14
183	Lateralization of response to social stimuli in fishes: A comparison between different methods and species. Physiology and Behavior, 2001, 74, 237-244.	2.1	122
184	Minimization of modal contours: An instance of an evolutionary internalized geometric regularity?. Behavioral and Brain Sciences, 2001, 24, 706-707.	0.7	9
185	Hemispheric memories for the content and position of food caches in the domestic chick Behavioral Neuroscience, 2001, 115, 305-313.	1.2	43
186	Encoding of geometric and landmark information in the left and right hemispheres of the avian brain Behavioral Neuroscience, 2001, 115, 602-613.	1.2	142
187	Illusory smoke and dazzling fog. Psychological Research, 2001, 65, 46-49.	1.7	2
188	Consistency among different tasks of left–right asymmetries in lines of fish originally selected for opposite direction of lateralization in a detour task. Neuropsychologia, 2001, 39, 1077-1085.	1.6	77
189	Why do birds sleep with one eye open? Light exposure of the chick embryo as a determinant of monocular sleep. Current Biology, 2001, 11, 971-974.	3.9	108
190	How birds use their eyes. Current Biology, 2001, 11, 29-33.	3.9	159
191	Heritability of lateralization in fish: concordance of right–left asymmetry between parents and offspring. Neuropsychologia, 2000, 38, 907-912.	1.6	115
192	Population lateralisation and social behaviour: A study with 16 species of fish. Laterality, 2000, 5, 269-284.	1.0	243
193	Comparative Neuropsychology of the Dual Brain: A Stroll through Animals' Left and Right Perceptual Worlds. Brain and Language, 2000, 73, 189-219.	1.6	307
194	Laterality and cooperation: mosquitofish move closer to a predator when the companion is on their left side. Animal Behaviour, 1999, 57, 1145-1149.	1.9	58
195	Minimization of modal contours: an essential cross-species strategy in disambiguating relative depth. Animal Cognition, 1999, 2, 181-185.	1.8	96
196	Detour behaviour, imprinting and visual lateralization in the domestic chick. Cognitive Brain Research, 1999, 7, 307-320.	3.0	92
197	What causes lateralization of detour behavior in fish? evidence for asymmetries in eye use. Behavioural Brain Research, 1999, 103, 229-234.	2.2	113
198	Lateralized agonistic responses and hindlimb use in toads. Animal Behaviour, 1998, 56, 875-881.	1.9	173

#	Article	IF	CITATIONS
199	The Origins of Cerebral Asymmetry: A Review of Evidence of Behavioural and Brain Lateralization in Fishes, Reptiles and Amphibians. Neuroscience and Biobehavioral Reviews, 1998, 22, 411-426.	6.1	447
200	Lateral asymmetries during escape behavior in a species of teleost fish (Jenynsia lineata). Physiology and Behavior, 1997, 61, 31-35.	2.1	40
201	Lateral asymmetries during responses to novel-coloured objects in the domestic chick: A developmental study. Behavioural Processes, 1996, 37, 67-74.	1.1	28
202	Right-pawedness in toads. Nature, 1996, 379, 408-408.	27.8	148
203	Lateralization of predator-evasion response in a teleost fish (Girardinus falcatus). Neuropsychologia, 1995, 33, 1637-1646.	1.6	176
204	Object and spatial representations in detour problems by chicks. Animal Behaviour, 1995, 49, 195-199.	1.9	129
205	Perceptual and motivational aspects of detour behaviour in young chicks. Animal Behaviour, 1994, 47, 123-131.	1.9	81
206	The development of responses to novel-coloured objects in male and female domestic chicks. Behavioural Processes, 1994, 31, 219-229.	1.1	11
207	Affiliation and aggression as related to gender in domestic chicks (Gallus gallus) Journal of Comparative Psychology (Washington, D C: 1983), 1992, 106, 53-57.	0.5	76
208	Right hemisphere advantage for social recognition in the chick. Neuropsychologia, 1992, 30, 761-768.	1.6	163
209	Sex differences in social reinstatement motivation of the domestic chick (Gallus gallus) revealed by runway tests with social and nonsocial reinforcement Journal of Comparative Psychology (Washington, D C: 1983), 1990, 104, 361-367.	0.5	82
210	Rudiments of mind: Insights through the chick model on number and space cognition in animals Comparative Cognition and Behavior Reviews, 0, 5, 78-99.	2.0	44
211	Chicken – Cognition in the Poultry Yard. , 0, , 97-118.		4
212	Cerebral and Behavioural Asymmetries in Animal Social Recognition. Comparative Cognition and Behavior Reviews, 0, 7, 110-138.	2.0	93
213	Honeybees learn patterns with ashing lights. , 0, , .		0
214	The file drawer effect – a long-lasting issue in science. , 0, , .		0
215	Quantity as a Fish Views It: Behavior and Neurobiology. Frontiers in Neuroanatomy, 0, 16, .	1.7	9