Wilfried Ellmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1529504/publications.pdf

Version: 2024-02-01

89 9,204 39 88 papers citations h-index g-index

95 95 95 95 9713

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	CD4+ Cytotoxic T cells – Phenotype, Function and Transcriptional Networks Controlling Their Differentiation Pathways. Immunology Letters, 2022, 247, 27-42.	2.5	15
2	Complex Interplay Between MAZR and Runx3 Regulates the Generation of Cytotoxic T Lymphocyte and Memory T Cells. Frontiers in Immunology, 2021, 12, 535039.	4.8	3
3	The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells. FASEB Journal, 2021, 35, e21217.	0.5	9
4	Histone deacetylase 1 controls CD4+ T cell trafficking in autoinflammatory diseases. Journal of Autoimmunity, 2021, 119, 102610.	6.5	7
5	24-Norursodeoxycholic acid reshapes immunometabolism in CD8+ T cells and alleviates hepatic inflammation. Journal of Hepatology, 2021, 75, 1164-1176.	3.7	20
6	Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK–driven lymphomagenesis. Life Science Alliance, 2021, 4, e202000794.	2.8	6
7	The Tyrosine Kinase Tec Regulates Effector Th17 Differentiation, Pathogenicity, and Plasticity in T-Cell-Driven Intestinal Inflammation. Frontiers in Immunology, 2021, 12, 750466.	4.8	5
8	Histone deacetylase 1 (HDAC1): A key player of T cell-mediated arthritis. Journal of Autoimmunity, 2020, 108, 102379.	6.5	31
9	Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Advances in Immunology, 2020, 147, 1-59.	2.2	21
10	PP2AC Phospho-Tyr307 Antibodies Are Not Specific for this Modification but Are Sensitive to Other PP2AC Modifications Including Leu309 Methylation. Cell Reports, 2020, 30, 3171-3182.e6.	6.4	16
11	NCOR1 Orchestrates Transcriptional Landscapes and Effector Functions of CD4+ T Cells. Frontiers in Immunology, 2020, 11, 579.	4.8	13
12	Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation. JCI Insight, 2020, 5, .	5.0	23
13	The zinc-finger transcription factor MAZR regulates iNKT cell subset differentiation. Cellular and Molecular Life Sciences, 2019, 76, 4391-4404.	5.4	5
14	Differential Requirement of Cd8 Enhancers E8I and E8VI in Cytotoxic Lineage T Cells and in Intestinal Intraepithelial Lymphocytes. Frontiers in Immunology, 2019, 10, 409.	4.8	5
15	The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3+ Regulatory T Cells. Cell Reports, 2019, 29, 4447-4459.e6.	6.4	13
16	CXCL5 as Regulator of Neutrophil Function inÂCutaneous Melanoma. Journal of Investigative Dermatology, 2019, 139, 186-194.	0.7	42
17	A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 2018, 86, 51-61.	6.5	39
18	Histone deacetylase function in CD4+ T cells. Nature Reviews Immunology, 2018, 18, 617-634.	22.7	106

#	Article	IF	CITATIONS
19	NCOR1—a new player on the field of T cell development. Journal of Leukocyte Biology, 2018, 104, 1061-1068.	3.3	24
20	Distinct and Overlapping Functions of TEC Kinase and BTK in B Cell Receptor Signaling. Journal of Immunology, 2017, 198, 3058-3068.	0.8	14
21	Immunity meets metabolism and then they start talking. FEBS Letters, 2017, 591, 2957-2958.	2.8	0
22	The corepressor NCOR1 regulates the survival of single-positive thymocytes. Scientific Reports, 2017, 7, 15928.	3.3	14
23	Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Reports, 2016, 16, 3311-3321.	6.4	25
24	The AMP analog AICAR modulates the T $<$ sub $>$ reg $<$ /sub $>$ $/$ T $<$ sub $>$ h $<$ /sub $>$ 17 axis through enhancement of fatty acid oxidation. FASEB Journal, 2016, 30, 3800-3809.	0.5	89
25	Distinct Pathways Regulate Syk Protein Activation Downstream of Immune Tyrosine Activation Motif (ITAM) and hemITAM Receptors in Platelets. Journal of Biological Chemistry, 2015, 290, 11557-11568.	3.4	64
26	PATZ1 Is a DNA Damage-Responsive Transcription Factor That Inhibits p53 Function. Molecular and Cellular Biology, 2015, 35, 1741-1753.	2.3	27
27	A novel <i>Cd8-cis</i> -regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8 <i>αα</i> + dendritic cells. Journal of Leukocyte Biology, 2015, 97, 635-644.	3.3	10
28	Rapid multiplex analysis of lipid raft components with single-cell resolution. Science Signaling, 2015, 8, rs11.	3.6	9
29	MAZR and Runx Factors Synergistically Repress ThPOK during CD8+ T Cell Lineage Development. Journal of Immunology, 2015, 195, 2879-2887.	0.8	25
30	Molecular control of CD4+ T cell lineage plasticity and integrity. International Immunopharmacology, 2015, 28, 813-817.	3.8	19
31	DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation. PLoS Genetics, 2015, 11, e1005645.	3.5	15
32	HDAC1 Controls CD8+ T Cell Homeostasis and Antiviral Response. PLoS ONE, 2014, 9, e110576.	2.5	16
33	The Non-receptor Tyrosine Kinase Tec Controls Assembly and Activity of the Noncanonical Caspase-8 Inflammasome. PLoS Pathogens, 2014, 10, e1004525.	4.7	40
34	CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nature Immunology, 2014, 15, 439-448.	14.5	70
35	The Role of BTB-Zinc Finger Transcription Factors During T Cell Development and in the Regulation of T Cell-mediated Immunity. Current Topics in Microbiology and Immunology, 2014, 381, 21-49.	1.1	21
36	Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cellular and Molecular Life Sciences, 2013, 70, 4537-4553.	5 . 4	28

3

#	Article	IF	Citations
37	Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II–restricted cytotoxic T lymphocytes. Nature Immunology, 2013, 14, 281-289.	14.5	306
38	The Tyrosine Kinase Btk Regulates the Macrophage Response to Listeria monocytogenes Infection. PLoS ONE, 2013, 8, e60476.	2.5	18
39	The Transcription Factor MAZR Preferentially Acts as a Transcriptional Repressor in Mast Cells and Plays a Minor Role in the Regulation of Effector Functions in Response to FclµRI Stimulation. PLoS ONE, 2013, 8, e77677.	2.5	9
40	The Role of Tec Family Kinases in the Regulation of T-helper-cell Differentiation. International Reviews of Immunology, 2012, 31, 133-154.	3.3	24
41	Transcriptional and Epigenetic Regulation of CD4/CD8 Lineage Choice. Advances in Immunology, 2011, 110, 71-110.	2.2	46
42	<i>Cd8</i> enhancer <i> E8 _I </i> and Runx factors regulate CD8α expression in activated CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18330-18335.	7.1	41
43	Btk is a positive regulator in the TREM-1/DAP12 signaling pathway. Blood, 2011, 118, 936-945.	1.4	39
44	Tec family kinases: regulation of FcεRlâ€mediated mastâ€cell activation. FEBS Journal, 2011, 278, 1990-2000.	4.7	39
45	RUNX Transcription Factor-Mediated Association of Cd4 and Cd8 Enables Coordinate Gene Regulation. Immunity, 2011, 34, 303-314.	14.3	32
46	Central Nervous System Mast Cells in Peripheral Inflammatory Nociception. Molecular Pain, 2011, 7, 1744-8069-7-42.	2.1	66
47	Cross-Talk Between Interferon- \hat{l}^3 and Hedgehog Signaling Regulates Adipogenesis. Diabetes, 2011, 60, 1668-1676.	0.6	37
48	The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nature Immunology, 2010, 11, 442-448.	14.5	89
49	Conditional Deletion of Histone Deacetylase 1 in T Cells Leads to Enhanced Airway Inflammation and Increased Th2 Cytokine Production. Journal of Immunology, 2010, 185, 3489-3497.	0.8	126
50	The Protein Tyrosine Kinase Tec Regulates a CD44highCD62Lâ^ Th17 Subset. Journal of Immunology, 2010, 185, 5111-5119.	0.8	20
51	The Role of Tec Family Kinases in Mononuclear Phagocytes. Critical Reviews in Immunology, 2009, 29, 317-333.	0.5	43
52	Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells. BMC Genomics, 2009, 10, 233.	2.8	20
53	The protein tyrosine kinase Tec regulates mast cell function. European Journal of Immunology, 2009, 39, 3228-3238.	2.9	22
54	Impaired Tâ€cell development in the absence of Vav1 and Itk. European Journal of Immunology, 2008, 38, 3530-3542.	2.9	11

#	Article	IF	Citations
55	Tyrosine Kinases Btk and Tec Regulate Osteoclast Differentiation by Linking RANK and ITAM Signals. Cell, 2008, 132, 794-806.	28.9	297
56	Essential Roles for the Tec Family Kinases Tec and Btk in M-CSF Receptor Signaling Pathways That Regulate Macrophage Survival. Journal of Immunology, 2008, 180, 8048-8056.	0.8	56
57	The transcriptional regulator PLZF induces the development of CD44 high memory phenotype T cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17919-17924.	7.1	78
58	The effects of dasatinib on IgE receptor–dependent activation and histamine release in human basophils. Blood, 2008, 111, 3097-3107.	1.4	78
59	The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13283-13288.	7.1	274
60	Down-regulation of RXRα expression is essential for neutrophil development from granulocyte/monocyte progenitors. Blood, 2007, 109, 971-979.	1.4	53
61	The Role of Tec Family Kinases in Inflammatory Processes. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2007, 6, 61-69.	1.1	0
62	The role of BTB domain-containing zinc finger proteins in T cell development and function. Immunology Letters, 2007, 108, 1-9.	2.5	50
63	Regulation of dendritic cell differentiation and subset distribution by the zinc finger protein CTCF. Immunology Letters, 2007, 109, 165-174.	2.5	11
64	'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nature Immunology, 2007, 8, 1049-1059.	14.5	151
65	Systematic Profiling and Novel Targets of the Bcr-Abl Kinase Inhibitors Imatinib, Nilotinib and Dasatinib Blood, 2007, 110, 4542-4542.	1.4	1
66	Negative regulation of CD8 expression via Cd8 enhancer–mediated recruitment of the zinc finger protein MAZR. Nature Immunology, 2006, 7, 392-400.	14.5	98
67	Functional and Molecular Analysis of the Double-Positive Stage-Specific CD8 Enhancer E8III during Thymocyte Development. Journal of Immunology, 2005, 174, 1513-1524.	0.8	33
68	CD8 T Cell Sensory Adaptation Dependent on TCR Avidity for Self-Antigens. Journal of Immunology, 2005, 175, 7388-7397.	0.8	19
69	Modulation of Coreceptor Transcription during Positive Selection Dictates Lineage Fate Independently of TCR/Coreceptor Specificity. Immunity, 2005, 23, 75-87.	14.3	58
70	Btk Is Required for an Efficient Response to Erythropoietin and for SCF-controlled Protection against TRAIL in Erythroid Progenitors. Journal of Experimental Medicine, 2004, 199, 785-795.	8.5	51
71	CD8αα-Mediated Survival and Differentiation of CD8 Memory T Cell Precursors. Science, 2004, 304, 590-593.	12.6	177
72	The CD4â§,CD8 Lineage Choice: New Insights into Epigenetic Regulation during T Cell Development. Advances in Immunology, 2004, 83, 55-89.	2,2	41

#	Article	IF	Citations
73	The Role of Tec Family Kinases in Myeloid Cells. International Archives of Allergy and Immunology, 2004, 134, 65-78.	2.1	83
74	Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood, 2004, 104, 1281-1290.	1.4	46
75	Tec regulates platelet activation by GPVI in the absence of Btk. Blood, 2003, 102, 3592-3599.	1.4	143
76	Progress Toward a Human CD4/CCR5 Transgenic Rat Model for De Novo Infection by Human Immunodeficiency Virus Type 1. Journal of Experimental Medicine, 2002, 195, 719-736.	8.5	97
77	Combined Deletion of CD8 Locus cis-Regulatory Elements Affects Initiation but Not Maintenance of CD8 Expression. Immunity, 2002, 16, 623-634.	14.3	63
78	Chromatin and CD4, CD8A and CD8B gene expression during thymic differentiation. Nature Reviews Immunology, 2002, 2, 909-919.	22.7	103
79	Differential Roles of Lck and Itk in T Cell Response to Antigen Recognition Revealed by Calcium Imaging and Electron Microscopy. Journal of Immunology, 2001, 166, 5540-5549.	0.8	39
80	PKC-Î, is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature, 2000, 404, 402-407.	27.8	847
81	Severe B Cell Deficiency in Mice Lacking the Tec Kinase Family Members Tec and Btk. Journal of Experimental Medicine, 2000, 192, 1611-1624.	8.5	177
82	THE REGULATION OF CD4 AND CD8 CORECEPTOR GENE EXPRESSION DURING T CELL DEVELOPMENT. Annual Review of Immunology, 1999, 17, 523-554.	21.8	243
83	Multiple Developmental Stage–Specific Enhancers Regulate CD8 Expression in Developing Thymocytes and in Thymus-Independent T Cells. Immunity, 1998, 9, 485-496.	14.3	105
84	An Enhancer That Directs Lineage-Specific Expression of CD8 in Positively Selected Thymocytes and Mature T Cells. Immunity, 1997, 7, 537-547.	14.3	111
85	Cloning and Characterization of CpG Islands of the Human Chromosome 1p36 Region. Genomics, 1996, 32, 155-158.	2.9	2
86	Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381, 661-666.	27.8	3,667
87	Expression of the helix-loop-helix gene ld3 during murine embryonic development. Developmental Dynamics, 1995, 203, 163-173.	1.8	42
88	Determination and Regional Assignment of Grouped Sets of Microclones in Chromosome 1pter–p35. Genomics, 1995, 29, 607-615.	2.9	4
89	Dominant and Recessive Molecular Changes in Neuroblastomas. Brain Pathology, 1992, 2, 195-208.	4.1	26