James F Booth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1528878/publications.pdf

Version: 2024-02-01

414414 430874 1,111 43 18 citations h-index papers

g-index 44 44 44 1545 docs citations times ranked citing authors all docs

32

#	Article	IF	Citations
1	Evaluation of ERA-Interim and MERRA Cloudiness in the Southern Ocean. Journal of Climate, 2014, 27, 2109-2124.	3.2	116
2	Sensitivity of Midlatitude Storm Intensification to Perturbations in the Sea Surface Temperature near the Gulf Stream. Monthly Weather Review, 2012, 140, 1241-1256.	1.4	85
3	The Future of Midlatitude Cyclones. Current Climate Change Reports, 2019, 5, 407-420.	8.6	77
4	Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments. Climate Dynamics, 2013, 41, 787-802.	3.8	74
5	Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nature Communications, 2016, 7, 11723.	12.8	67
6	A Review of Historical and Future Changes of Extratropical Cyclones and Associated Impacts Along the US East Coast. Current Climate Change Reports, 2015, 1, 125-143.	8.6	66
7	The Signature of the Midlatitude Tropospheric Storm Tracks in the Surface Winds. Journal of Climate, 2010, 23, 1160-1174.	3.2	49
8	The Relationship between Boundary Layer Stability and Cloud Cover in the Post-Cold-Frontal Region. Journal of Climate, 2016, 29, 8129-8149.	3.2	45
9	Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments. Climate Dynamics, 2019, 52, 2067-2089.	3 . 8	41
10	Comparing hurricane and extratropical storm surge for the Mid-Atlantic and Northeast Coast of the United States for 1979–2013. Environmental Research Letters, 2016, 11, 094004.	5.2	36
11	Process-Oriented Evaluation of Climate and Weather Forecasting Models. Bulletin of the American Meteorological Society, 2019, 100, 1665-1686.	3.3	36
12	Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An Analysis of ERA-Interim, WRF, and Two CMIP5 Models. Journal of Climate, 2018, 31, 2345-2360.	3.2	30
13	The Paths of Extratropical Cyclones Associated with Wintertime High-Wind Events in the Northeastern United States. Journal of Applied Meteorology and Climatology, 2015, 54, 1871-1885.	1.5	28
14	Spatial Patterns and Intensity of the Surface Storm Tracks in CMIP5 Models. Journal of Climate, 2017, 30, 4965-4981.	3.2	26
15	Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting. Journal of Climate, 2013, 26, 5827-5845.	3.2	22
16	An examination of extratropical cyclone response to changes in baroclinicity and temperature in an idealized environment. Climate Dynamics, 2018, 51, 3829-3846.	3.8	22
17	New York City Panel on Climate Change 2019 Report Chapter 4: Coastal Flooding. Annals of the New York Academy of Sciences, 2019, 1439, 95-114.	3.8	22
18	Extratropical Cyclone Precipitation Life Cycles: A Satelliteâ€Based Analysis. Geophysical Research Letters, 2018, 45, 8647-8654.	4.0	21

#	Article	IF	CITATIONS
19	New York City Panel on Climate Change 2019 Report Chapter 2: New Methods for Assessing Extreme Temperatures, Heavy Downpours, and Drought. Annals of the New York Academy of Sciences, 2019, 1439, 30-70.	3.8	21
20	The Relationship Between Extratropical Cyclone Steering and Blocking Along the North American East Coast. Geophysical Research Letters, 2017, 44, 11,976.	4.0	19
21	Classifying Urban Rainfall Extremes Using Weather Radar Data: An Application to the Greater New York Area. Journal of Hydrometeorology, 2017, 18, 611-623.	1.9	16
22	Post Cold Frontal Clouds at the ARM Eastern North Atlantic Site: An Examination of the Relationship Between Largeâ€Scale Environment and Lowâ€Level Cloud Properties. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,117.	3.3	16
23	Multiple satellite observations of cloud cover in extratropical cyclones. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9982-9996.	3.3	15
24	Effective stability in a moist baroclinic wave. Atmospheric Science Letters, 2015, 16, 56-62.	1.9	14
25	Observational Constraint for Precipitation in Extratropical Cyclones: Sensitivity to Data Sources. Journal of Applied Meteorology and Climatology, 2018, 57, 991-1009.	1.5	14
26	The Interaction Between Boundary Layer and Convection Schemes in a WRF Simulation of Post Cold Frontal Clouds Over the ARM East North Atlantic Site. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4699-4721.	3.3	13
27	Relationships Between Precipitation Properties and Largeâ€Scale Conditions During Subsidence at the Eastern North Atlantic Observatory. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031848.	3.3	12
28	Predictable Changes in Extreme Sea Levels and Coastal Flood Risk Due To Long‶erm Tidal Cycles. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	11
29	SynthETC: A Statistical Model for Severe Winter Storm Hazard on Eastern North America. Journal of Climate, 2017, 30, 5329-5343.	3.2	10
30	Track and Circulation Analysis of Tropical and Extratropical Cyclones that Cause Strong Precipitation and Streamflow Events in the New York City Watershed. Journal of Hydrometeorology, 2018, 19, 1027-1042.	1.9	10
31	Evaluation of Modeled Precipitation in Oceanic Extratropical Cyclones Using IMERG. Journal of Climate, 2020, 33, 95-113.	3.2	10
32	Isolating the role of mesoscale eddies in mixing of a passive tracer in an eddy resolving model. Journal of Geophysical Research, 2008, 113 , .	3.3	9
33	Winter storm intensity, hazards, and property losses in the New York tristate area. Annals of the New York Academy of Sciences, 2017, 1400, 65-80.	3.8	9
34	Extratropical Cyclone Clouds in the GFDL Climate Model: Diagnosing Biases and the Associated Causes. Journal of Climate, 2019, 32, 6685-6701.	3.2	9
35	On the Relationship Between the Marine Cold Air Outbreak M Parameter and Lowâ€Level Cloud Heights in the Midlatitudes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032465.	3.3	9
36	WRF Hindcasts of Cold Front Passages over the ARM Eastern North Atlantic Site: A Sensitivity Study. Monthly Weather Review, 2018, 146, 2417-2432.	1.4	7

#	Article	IF	CITATION
37	Upright Convection in Extratropical Cyclones: A Survey Using Groundâ€Based Radar Data Over the United States. Geophysical Research Letters, 2020, 47, e2019GL086620.	4.0	7
38	Atmospheric blocking in an aquaplanet and the impact of orography. Weather and Climate Dynamics, 2020, 1, 293-311.	3.5	5
39	Understanding the Spatial Organization of Simultaneous Heavy Precipitation Events Over the Conterminous United States. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033036.	3.3	3
40	Blocking and General Circulation in GFDL Comprehensive Climate Models. Journal of Climate, 2022, 35, 3687-3703.	3.2	3
41	The impact of Coriolis approximations on the environmental sensitivity of idealized extratropical cyclones. Climate Dynamics, 2019, 53, 7065-7080.	3.8	2
42	Tropical cyclone storm surge probabilities for the east coast of the United States: a cyclone-based perspective. Natural Hazards and Earth System Sciences, 2022, 22, 1287-1300.	3.6	2
43	Storm Surge, Blocking, and Cyclones: A Compound Hazards Analysis for the Northeast United States. Journal of Applied Meteorology and Climatology, 2021, , .	1.5	1