Ales Ruzicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1528648/publications.pdf

Version: 2024-02-01

377 papers

6,698 citations

71102 41 h-index 54 g-index

401 all docs

401 docs citations

times ranked

401

4210 citing authors

#	Article	IF	CITATIONS
1	Reversible addition of tin(<scp>ii</scp>) amides to nitriles. Dalton Transactions, 2022, 51, 1879-1887.	3.3	1
2	Molecular Rearrangement of Pyrazino[2,3-c]quinolin-5(6H)-ones during Their Reaction with Isocyanic Acid. International Journal of Molecular Sciences, 2022, 23, 5481.	4.1	0
3	Lithium, Magnesium, and Zinc Centers N,N′-Chelated by an Amine–Amide Hybrid Ligand. Inorganic Chemistry, 2022, 61, 9392-9404.	4.0	1
4	Greenâ€; Redâ€; and Infraredâ€Emitting Polymorphs of Sterically Hindered Push–Pull Substituted Stilbenes. Chemistry - A European Journal, 2021, 27, 4341-4348.	3.3	7
5	Coordination capabilities of bis-(2-pyridyl)amides in the field of divalent germanium, tin and lead compounds. Dalton Transactions, 2021, 50, 6321-6332.	3.3	3
6	Oxidative addition of cyanogen bromide to C,N-chelated and Lappert's stannylenes. Dalton Transactions, 2021, 50, 5519-5529.	3.3	3
7	On the edge of the steric repulsion and reactivity of bulky anilines; a case study of chloro(imino)phosphine synthesis. Dalton Transactions, 2021, 50, 14352-14361.	3.3	1
8	Transformation of various multicenter bondings within bicapped-square antiprismatic motifs: <i>Z</i> -rearrangement. Dalton Transactions, 2021, 50, 12098-12106.	3.3	4
9	New Types of Ge ₂ and Ge ₄ Assemblies Stabilized by a Carbanionic Dicarborandiyl-Silylene Ligand. Journal of the American Chemical Society, 2021, 143, 6229-6237.	13.7	26
10	Reaction Outcome Critically Dependent on the Method of Workup: An Example from the Synthesis of 1-Isoquinolones. Journal of Organic Chemistry, 2021, 86, 8078-8088.	3.2	4
11	Changing the Reactivity of Zero†and Monoâ€Valent Germanium with a Redox Nonâ€Innocent Bis(silylenyl)carborane Ligand. Angewandte Chemie, 2021, 133, 14990-14994.	2.0	14
12	Changing the Reactivity of Zero―and Monoâ€Valent Germanium with a Redox Nonâ€Innocent Bis(silylenyl)carborane Ligand. Angewandte Chemie - International Edition, 2021, 60, 14864-14868.	13.8	38
13	Thiaborane Icosahedral Barrier Increased by the Functionalization of all Terminal Hydrogens in closo-1-SB11H11. Inorganic Chemistry, 2021, 60, 8428-8431.	4.0	1
14	Nonâ€conventional Behavior of a 2,1â€Benzazaphosphole: Heterodiene or Hidden Phosphinidene?. Chemistry - A European Journal, 2021, 27, 13149-13160.	3.3	4
15	Nâ†'Ge Coordinated Germylenes as Ligands for Monomeric Cu Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 3301-3304.	2.0	5
16	Nonâ€conventional Behavior of a 2,1â€Benzazaphosphole: Heterodiene or Hidden Phosphinidene?. Chemistry - A European Journal, 2021, 27, 13096-13097.	3.3	0
17	Access to cationic polyhedral carboranes via dynamic cage surgery with N-heterocyclic carbenes. Nature Communications, 2021, 12, 4971.	12.8	8
18	Probing Limits of a C=C Bond Activation by Nâ€Coordinated Organopnictogen(I) Compounds. European Journal of Inorganic Chemistry, 2021, 2021, 4030-4041.	2.0	7

#	Article	IF	CITATIONS
19	Distinctly different reactivity of bis(silylenyl)- <i>versus</i> phosphanyl-silylenyl-substituted <i>o</i> dicarborane towards O ₂ , N ₂ O and CO ₂ . Chemical Communications, 2021, 57, 5965-5968.	4.1	16
20	Investigation of Intramolecular Interactions in the Crystals of Tetrazene Explosive and Its Salts. Crystal Growth and Design, 2021, 21, 6567-6575.	3.0	2
21	Tetrazene–Characterization of Its Polymorphs. Molecules, 2021, 26, 7106.	3.8	1
22	<i>Sn</i> , <i>P</i> -coordinated Ru cation: a robust catalyst for aerobic oxidations of benzylamine and benzyl alcohol. Chemical Communications, 2021, 57, 12992-12995.	4.1	4
23	Undiscovered Potential: Ge Catalysts for Lactide Polymerization. Chemistry - A European Journal, 2020, 26, 212-221.	3.3	34
24	Homocoupling of CO and isocyanide mediated by a <i>C</i> , <i>C</i> ,ꀲ-bis(silylenyl)-substituted <i>ortho</i> -carborane. Chemical Communications, 2020, 56, 747-750.	4.1	53
25	Self-assembly of azaphthalocyanine–oligodeoxynucleotide conjugates into J-dimers: towards biomolecular logic gates. Organic Chemistry Frontiers, 2020, 7, 445-456.	4.5	5
26	Hetero Diels–Alder Reactions of Masked Dienes Containing Heavy Group 15 Elements. Chemistry - A European Journal, 2020, 26, 1144-1154.	3.3	23
27	Electrophilic Methylation of Decaborane (14): Selective Synthesis of Tetramethylated and Heptamethylated Decaboranes and Their Conjugated Bases. Inorganic Chemistry, 2020, 59, 10540-10547.	4.0	3
28	Lithium and Dilithium Guanidinates, a Starter Kit for Metal Complexes Containing Various Mono- and Dianionic Ligands. Inorganic Chemistry, 2020, 59, 10854-10865.	4.0	5
29	Probing the Limits of Oxidative Addition of C(sp ³)â€"X Bonds toward Selected <i>N,C,N</i> -Chelated Bismuth(I) Compounds. Organometallics, 2020, 39, 4320-4328.	2.3	23
30	Transition-Metal Capping to Suppress Back-Donation to Enhance Donor Ability. Organometallics, 2020, 39, 4191-4194.	2.3	7
31	Bis(silylene)â€Stabilized Monovalent Nitrogen Complexes. Angewandte Chemie - International Edition, 2020, 59, 22043-22047.	13.8	31
32	Bis(silylene)â€Stabilized Monovalent Nitrogen Complexes. Angewandte Chemie, 2020, 132, 22227-22231.	2.0	9
33	The Influence of Halogenated Hypercarbon on Crystal Packing in the Series of 1-Ph-2-X-1,2-dicarba-closo-dodecaboranes (X = F, Cl, Br, I). Molecules, 2020, 25, 1200.	3.8	3
34	Reactivity of boraguanidinato germylenes toward carbonyl compounds and isocyanides: C–O, C–F and C–N bond activation. Dalton Transactions, 2020, 49, 4869-4877.	3.3	7
35	Nucleophile-assisted cyclization of \hat{l}^2 -propargylamino acrylic compounds catalyzed by gold($\langle scp \rangle i \langle scp \rangle$): a rapid construction of multisubstituted tetrahydropyridines and their fused derivatives. Organic Chemistry Frontiers, 2020, 7, 3356-3367.	4.5	5
36	Redox Noninnocent Monoatomic Silicon(0) Complex ("Silyloneâ€): Its One-Electron-Reduction Induces an Intramolecular One-Electron-Oxidation of Silicon(0) to Silicon(I). Journal of the American Chemical Society, 2020, 142, 12608-12612.	13.7	63

#	Article	IF	Citations
37	Experimental and Theoretical Evidence of Spinâ€Orbit Heavy Atom on the Light Atom 1 Hâ€NMR Chemical Shifts Induced through Hâ⟨â⟨â⟨â⟨â 'â 'a	3.3	0
38	Organogermanium(II) Hydrides as a Source of Highly Soluble LiH. Chemistry - A European Journal, 2020, 26, 6070-6075.	3.3	7
39	Experimental and Theoretical Evidence of Spinâ€Orbit Heavy Atom on the Light Atom ¹ Hâ€NMR Chemical Shifts Induced through Hâ‹â‹â‹l ^{â^³} Hydrogen Bond. Chemistry - A European Journal, 2020, 26, 8698-8702.	3.3	9
40	Access to the most sterically crowded anilines <i>via</i> non-catalysed C–C coupling reactions. Chemical Communications, 2020, 56, 2487-2490.	4.1	5
41	Structural elaboration of dicyanopyrazine: towards push–pull molecules with tailored photoredox activity. RSC Advances, 2019, 9, 23797-23809.	3.6	14
42	Synthesis and coordination properties of new $ f2,\hat{n} $ switchable chelators based on [1,2,3]-diazaphosphole. New Journal of Chemistry, 2019, 43, 13388-13397.	2.8	5
43	Reversible C=C Bond Activation by an Intramolecularly Coordinated Antimony(I) Compound. Chemistry - A European Journal, 2019, 25, 12884-12888.	3.3	26
44	Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer's disease. Phytochemistry, 2019, 165, 112055.	2.9	43
45	Antimony(<scp>i</scp>) â†' Pd(<scp>ii</scp>) complexes with the (ν-Sb)Pd ₂ coordination framework. Dalton Transactions, 2019, 48, 11912-11920.	3.3	14
46	Spectroscopic and Computational Evidence of Intramolecular Au ^I â<â<â <h<sup>+â^'N Hydrogen Bonding. Angewandte Chemie, 2019, 131, 2033-2038.</h<sup>	2.0	19
47	Reversible C=C Bond Activation by an Intramolecularly Coordinated Antimony(I) Compound. Chemistry - A European Journal, 2019, 25, 12854-12854.	3.3	0
48	Reactivity of an <i>N</i> , <i>N</i> ,ê€Chelated Germylene Toward Substituted Alkynes, Alkenes, and Allenes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 671-678.	1,2	3
49	Thiaboranes on Both Sides of the Icosahedral Barrier: Retaining and Breaking the Barrier with Carbon Functionalities. ChemPlusChem, 2019, 84, 822-827.	2.8	4
50	From a 2,1â€Benzazaarsole to Elusive 1â€Arsanaphthalenes in One Step. Chemistry - A European Journal, 2019, 25, 5668-5671.	3.3	13
51	The addition of Grignard reagents to carbodiimides. The synthesis, structure and potential utilization of magnesium amidinates. Dalton Transactions, 2019, 48, 5335-5342.	3.3	12
52	Thiaborane clusters with an exoskeletal B–H group. Chemical Communications, 2019, 55, 3375-3378.	4.1	1
53	Synthesis of <i>closo-</i> 1,2-H ₂ C ₂ B ₈ Me ₈ A A and 1,2-H ₂ C ₂ B <sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub b<sub="">B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub b<sub="">B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub b<sub="">B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub b<sub="">B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub>B<sub b_{B<su< td=""><td>4.0</td><td>7</td></su<>}}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	4.0	7
54	Investigation of Thiaborane <i>closo</i> – <i>nido</i> Conversion Pathways Promoted by <i>N</i> -Heterocyclic Carbenes. Inorganic Chemistry, 2019, 58, 2471-2482.	4.0	6

#	Article	IF	CITATIONS
55	Spectroscopic and Computational Evidence of Intramolecular Au ^I â<â<â <h<sup>+â^'N Hydrogen Bonding. Angewandte Chemie - International Edition, 2019, 58, 2011-2016.</h<sup>	13.8	51
56	Helicenes Built from Silacyclopentadienes via Ringâ€byâ€Ring Knitting of the Helical Framework. Angewandte Chemie - International Edition, 2019, 58, 1654-1658.	13.8	8
57	Structureâ€Catalytic Activity in a Series of Pushâ€Pull Dicyanopyrazine/Dicyanoimidazole Photoredox Catalysts. ChemistrySelect, 2018, 3, 4262-4270.	1.5	25
58	Reactivity of a Nâ†'Sn Coordinated Distannyne: Reduction and Hydrogen Abstraction. European Journal of Inorganic Chemistry, 2018, 2018, 2038-2044.	2.0	12
59	Insertion of the N,B,N -chelated germylene into P-Cl Bond(s) in selected chlorophosphines. Journal of Organometallic Chemistry, 2018, 855, 44-50.	1.8	8
60	Aurophilic Interactions in [(L)AuCl][(L′)AuCl] Dimers: Calibration by Experiment and Theory. Journal of the American Chemical Society, 2018, 140, 2316-2325.	13.7	48
61	Direct synthesis of dicarbollides. New Journal of Chemistry, 2018, 42, 8524-8529.	2.8	4
62	Triorganotin(<scp>iv</scp>) cation-promoted dimethyl carbonate synthesis from CO ₂ and methanol: solution and solid-state characterization of an unexpected diorganotin(<scp>iv</scp>)-oxo cluster. New Journal of Chemistry, 2018, 42, 8253-8260.	2.8	10
63	Various types of non-covalent interactions contributing towards crystal packing of halogenated diphospha-dicarbaborane with an open pentagonal belt. New Journal of Chemistry, 2018, 42, 10481-10483.	2.8	1
64	Synthesis and non-conventional structure of square-planar Pd(<scp>ii</scp>) and Pt(<scp>ii</scp>) complexes with an <i>N</i> , <i>C</i> , <i>N</i> -chelated stibinidene ligand. Dalton Transactions, 2018, 47, 5812-5822.	3.3	17
65	Trapping of the N,C,N-chelated organobismuth(I) compound, [2,6-(Me2NCH2)2C6H3]Bi, by its coordination toward selected transition metal fragments. Journal of Organometallic Chemistry, 2018, 863, 15-20.	1.8	20
66	Electrochemical and Reactivity Studies of Nâ†'Sn Coordinated Distannynes. Chemistry - A European Journal, 2018, 24, 1104-1111.	3.3	7
67	Diverse reactivity of a boraguanidinato germylene toward organic pseudohalides. Dalton Transactions, 2018, 47, 14880-14883.	3.3	13
68	Quantitative syntheses of permethylated <i>closo</i> -1,10-R ₂ C ₂ B ₈ Me ₈ (R = H, Me) carboranes. Egg-shaped hydrocarbons on the Frontier between inorganic and organic chemistry. RSC Advances, 2018, 8, 38238-38244.	3.6	6
69	Heavier pnictinidene gold(<scp>i</scp>) complexes. Dalton Transactions, 2018, 47, 14503-14514.	3.3	19
70	Methyl camouflage in the ten-vertex <i>closo</i> -dicarbaborane(10) series. Isolation of <i>closo</i> -1,6-R ₂ C ₂ B ₈ Me ₈ (R = H and Me) and their monosubstituted analogues. Dalton Transactions, 2018, 47, 11070-11076.	3.3	6
71	Heterocycles Derived from Generating Monovalent Pnictogens within NCN Pincers and Bidentate NC Chelates: Hypervalency versus Bell-Clappers versus Static Aromatics. Organometallics, 2018, 37, 2481-2490.	2.3	33
72	From Linear to Tâ€Shaped Indanâ€1,3â€dione Push–Pull Molecules: A Comparative Study. Helvetica Chimica Acta, 2018, 101, e201800090.	1.6	7

#	Article	IF	Citations
73	New synthetic strategies leading to [RNPNR] < sup>â^² < /sup>anions and the isolation of the [P(N <i>t</i> -Bu) < sub>3 < /sub>3 < /sup>3â^² < /sup>trianion. Dalton Transactions, 2018, 47, 8434-8441.	3.3	6
74	A comparative study of the structure and bonding in heavier pnictinidene complexes $[(ArE)M(CO) < sub > n < /sub >]$ (E = As, Sb and Bi; M = Cr, Mo, W and Fe). Dalton Transactions, 2017, 46, 3556-3568.	3.3	44
75	Electrophilic Halogenation of <i>closo</i> -1,2-C ₂ B ₈ H ₁₀ . Inorganic Chemistry, 2017, 56, 5971-5975.	4.0	5
76	Intercalation of alcohols into barium phenylphosphonate: Influence of the number and position of functional groups in the guests on their arrangement in the intercalates. Journal of Solid State Chemistry, 2017, 251, 211-216.	2.9	1
77	Employing a C,N-chelate makes organotin(IV) nitrates and nitrites exceptionally stable. Journal of Organometallic Chemistry, 2017, 845, 90-97.	1.8	9
78	Different Products of the Reduction of (N),C,Nâ€Chelated Antimony(III) Compounds: Competitive Formation of Monomeric Stibinidenes versus 1 <i>H</i> à€2,1â€Benzazastiboles. Chemistry - A European Journal, 2017, 23, 2340-2349.	3.3	39
79	The role of trinuclear species in a palladium acetate/trifluoroacetic acid catalytic system. Dalton Transactions, 2017, 46, 16269-16275.	3.3	21
80	Pnictogen bonding in pyrazine•PnX5 (Pn = P, As, Sb and X = F, Cl, Br) complexes. Journal of Molecular Modeling, 2017, 23, 328.	1.8	18
81	Direct access to non-symmetric lithium nitriloamidinate and disymmetric dilithium bisamidinate complexes from 1,3- or 1,4- dicyanobenzene and lithium amides. Journal of Organometallic Chemistry, 2017, 849-850, 88-97.	1.8	5
82	Dipolar NLO Chromophores Bearing Diazine Rings as π-Conjugated Linkers. Journal of Organic Chemistry, 2017, 82, 9435-9451.	3.2	76
83	Facile activation of alkynes with a boraguanidinato-stabilized germylene: a combined experimental and theoretical study. Dalton Transactions, 2017, 46, 12339-12353.	3.3	10
84	A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing. Dalton Transactions, 2017, 46, 13714-13719.	3.3	14
85	Structure of non-symmetric lithium amidinate complexes prepared by addition of lithium amides to various nitriles. Journal of Organometallic Chemistry, 2017, 828, 68-74.	1.8	8
86	The Interplay between Various $\parallel f$ - and $\parallel \in$ -Hole Interactions of Trigonal Boron and Trigonal Pyramidal Arsenic Triiodides. Crystals, 2017, 7, 225.	2,2	6
87	Spontaneous Double Hydrometallation Induced by Nâ†'M Coordination in Organometallic Hydrides of Group 14 Elements. Chemistry - A European Journal, 2016, 22, 5620-5628.	3.3	16
88	1,2,4â€Triazoleâ€based <i>N</i> â€heterocyclic carbene complexes of gold(I): synthesis, characterization and biological activity. Applied Organometallic Chemistry, 2016, 30, 318-322.	3.5	18
89	An unexpected rearrangement of carbon vertexes in the tricarbollide series. Asymmetrical 7-aryl-nido-7,8,9-C3B8H11 derivatives. Journal of Organometallic Chemistry, 2016, 805, 117-121.	1.8	3
90	Germylenes and stannylenes stabilized within N $<$ sub $>$ 2 $<$ /sub $>$ PE rings (E = Ge or Sn): combined experimental and theoretical study. Dalton Transactions, 2016, 45, 10343-10354.	3.3	10

#	Article	IF	Citations
91	C,N-Chelated organotin(<scp>iv</scp>) azides: synthesis, structure and use within click chemistry. New Journal of Chemistry, 2016, 40, 5808-5817.	2.8	8
92	Synthesis and reactivity of a germylene stabilized by a boraguanidinate ligand. RSC Advances, 2016, 6, 19377-19388.	3.6	18
93	Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes. ChemPhysChem, 2016, 17, 3373-3376.	2.1	40
94	Homolytic, Heterolytic, Mesolytic ―As You Like It: Steering the Cleavage of a HC(sp ³)â^'C(sp ³)H Bond in Bis(1 <i>H</i> â€2,1â€benzazaborole) Derivatives. Chemistic A European Journal, 2016, 22, 15340-15349.	ry3.3	7
95	Prototropic \hat{l} 4-H8,9 and \hat{l} 4-H9,10 Tautomers Derived from the [nido-5,6-C2B8H11] \hat{a} Anion. Inorganic Chemistry, 2016, 55, 10122-10124.	4.0	3
96	Poly(ethylene terephthalate) synthesis catalysed by chelated Sn, Zn and Mg complexes. Applied Organometallic Chemistry, 2016, 30, 20-25.	3.5	9
97	Reduction of Nâ€Nitrosaminoquinolinediones with LiAlH ₄ – an Easy Path to New Tricyclic Benzoxadiazocines. Helvetica Chimica Acta, 2016, 99, 50-62.	1.6	5
98	Yttrocene Chloride and Methyl Complexes with Variously Substituted Cyclopentadienyl Ligands: Synthesis, Characterization, and Reactivity toward Ethylene. European Journal of Inorganic Chemistry, 2016, 2016, 3713-3721.	2.0	6
99	Open-face alkylation of the 8-R-nido-7,8,9-C3B8H11 tricarbollides. Journal of Organometallic Chemistry, 2016, 822, 80-84.	1.8	1
100	Click Dehydrogenation of Carbon-Substituted <i>nido</i> -5,6-C ₂ 8 ₈ H ₁₂ Carboranes: A General Route to <i>closo</i> -1,2-C ₂ 8 ₈ H ₁₀ Derivatives. Inorganic Chemistry, 2016, 55, 8839-8843.	4.0	11
101	The π Complex of the Hydronium Ion Frozen on the Pathway of Electrophilic Aromatic Substitution. European Journal of Organic Chemistry, 2016, 2016, 4473-4475.	2.4	2
102	Intramolecularly Coordinated Gallium Sulfides: Suitable Single Source Precursors for GaS Thin Films. Chemistry - A European Journal, 2016, 22, 18817-18823.	3.3	15
103	Synthesis and Structure of (<i>N</i> ,) <i>C</i> , <i>N</i> ,i>€ehelated Organoantimony(III) and Bismuth(III) Cations and Isolation of Their Adducts with Ag[CB ₁₁ H ₁₂]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1212-1217.	1.2	13
104	Stibinidene and Bismuthinidene as Twoâ€Electron Donors for Transition Metals (Co and Mn). Chemistry - A European Journal, 2016, 22, 7376-7380.	3.3	51
105	Crystal structure and thermal behaviors of the tetrapotassium salt of octahydroimidazo-[4,5-d]imidazol-1,3,4,6-tetrasulfonic acid (TACOS-K). Journal of Thermal Analysis and Calorimetry, 2016, 126, 391-397.	3.6	1
106	Sequential Camouflage of the arachno-6,9-C2B8H14 Cage by Substituents. Inorganic Chemistry, 2016, 55, 7068-7074.	4.0	5
107	Expanding the family of C,N-chelated organotin(IV) pseudohalides: Synthesis and structural characterization. Journal of Organometallic Chemistry, 2016, 801, 14-23.	1.8	14
108	Nâ†'Sn-Coordinated Stannaoxidoborates Containing a SnB ₄ O ₆ Unit. Inorganic Chemistry, 2016, 55, 1587-1594.	4.0	7

#	Article	IF	CITATIONS
109	On the nature of the stabilisation of the Eâçï€ pnicogen bond in the SbCl ₃ âçtoluene complex. Chemical Communications, 2016, 52, 3500-3503.	4.1	39
110	New Insight into the Nature of Bonding in the Dimers of Lappert's Stannylene and Its Ge Analogs: A Quantum Mechanical Study. Journal of Chemical Theory and Computation, 2016, 12, 1696-1704.	5.3	16
111	The non-planarity of the benzene molecule in the X-ray structure of the chelated bismuth(iii) heteroboroxine complex is not supported by quantum mechanical calculations. Dalton Transactions, 2016, 45, 462-465.	3.3	10
112	Hybrid amidinates and guanidinates of main group metals. Coordination Chemistry Reviews, 2016, 314, 103-113.	18.8	73
113	Less Is More: Threeâ€Coordinate C,Nâ€Chelated Distannynes and Digermynes. Chemistry - A European Journal, 2015, 21, 7820-7829.	3.3	36
114	Intercalates of Strontium Phenylphosphonate with Alcohols – Structure Analysis by Experimental and Molecular Modeling Methods. European Journal of Inorganic Chemistry, 2015, 2015, 1552-1561.	2.0	6
115	From Dibismuthenes to Three―and Twoâ€Coordinated Bismuthinidenes by Fine Ligand Tuning: Evidence for Aromatic BiC ₃ N Rings through a Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2015, 21, 16917-16928.	3.3	76
116	From Stiba- and Bismaheteroboroxines to N,C,N-Chelated Diorganoantimony(III) and Bismuth(III) Cations—An Unexpected Case of Aryl Group Migration. Inorganic Chemistry, 2015, 54, 6010-6019.	4.0	20
117	Synthesis and structure of heavy group 15 metallastannoxanes [2,6-(Me2NCH2)2C6H3E](2,6-Mes2C6H3Sn)3O3(OH)5 (EÂ=ÂSb, Bi). Journal of Organometallic Chemistry, 2015, 797, 171-173.	1.8	2
118	Reactivity of N,C,N-Chelated Antimony(III) and Bismuth(III) Chlorides with Lithium Reagents: Addition vs Substitution. Organometallics, 2015, 34, 534-541.	2.3	24
119	Aluminium complexes containing N,N′-chelating amino-amide hybrid ligands applicable for preparation of biodegradable polymers. Journal of Organometallic Chemistry, 2015, 778, 35-41.	1.8	15
120	Oxidative Additions of Homoleptic Tin(II) Amidinate. Organometallics, 2015, 34, 606-615.	2.3	13
121	Fully Substituted Pyranones via Quasi-Heterogeneous Genuinely Ligand-Free Migita–Stille Coupling of lodoacrylates. Organic Letters, 2015, 17, 520-523.	4.6	18
122	Simple Synthesis, Halogenation, and Rearrangement of <i>closo</i> -1,6-C ₂ 8 ₈ H ₁₀ . Organometallics, 2015, 34, 450-454.	2.3	16
123	Reactivity of bis(organoamino)phosphanes with magnesium(<scp>ii</scp>) compounds. Dalton Transactions, 2015, 44, 4533-4545.	3.3	5
124	Intramolecularly coordinated organocadmium iodides. Inorganica Chimica Acta, 2015, 436, 39-44.	2.4	2
125	Bisguanidinato and bisamidinato Tin(IV) diolates applicable in ring-opening polymerization. Catalysis Communications, 2015, 60, 110-113.	3.3	8
126	Addition of dimethylaluminium chloride to N,N′-Disubstituted carbodiimides. Journal of Organometallic Chemistry, 2015, 786, 48-54.	1.8	11

#	Article	IF	CITATIONS
127	Highly substituted zirconium and hafnium cyclopentadienyl bifunctional \hat{l}^2 -diketiminate complexes $\hat{a} \in \mathcal{L}$ Synthesis, structure, and catalytic activity towards ethylene polymerization. Journal of Organometallic Chemistry, 2015, 786, 71-80.	1.8	6
128	Methoxyaryl substituted aluminum ketiminate complexes and its activity in ring opening polymerization processes. Inorganic Chemistry Communication, 2015, 55, 161-164.	3.9	10
129	Characterization of Erythritol Tetranitrate Physical Properties. Propellants, Explosives, Pyrotechnics, 2015, 40, 185-188.	1.6	19
130	Unique Stereocontrol in Carborane Chemistry: Skeletal Alkylcarbonation (SAC) versus Exoskeletal Alkylmethylation (EAM) Reactions. Angewandte Chemie - International Edition, 2015, 54, 4937-4940.	13.8	5
131	Addition of in situ reduced amidinato-methylaluminium chloride to acetylenes. Dalton Transactions, 2015, 44, 17462-17466.	3.3	3
132	Zinc complexes chelated by bifunctional ketiminate ligands: Structure, reactivity and possible applications in initiation of ROP and copolymerization of epoxides with carbon dioxide. Journal of Organometallic Chemistry, 2015, 794, 237-246.	1.8	13
133	Mixed amido-cyclopentadienyl group 4 metal complexes. RSC Advances, 2015, 5, 59154-59166.	3.6	5
134	Antimony(<scp>iii</scp>) and bismuth(<scp>iii</scp>) amides containing pendant N-donor groups – a combined experimental and theoretical study. Dalton Transactions, 2015, 44, 395-400.	3.3	10
135	Synthesis, structure and rearrangement of iodinated imidazo[1,2- c]pyrimidine-5(6 H)-ones derived from cytosine. Tetrahedron, 2015, 71, 27-36.	1.9	6
136	Reactivity of Tin(II) Guanidinate with 1,2- and 1,3-Diones: Oxidative Cycloaddition or Ligand Substitution ?. Organometallics, 2015, 34, 2202-2211.	2.3	8
137	Synthesis and structure of the first tin(II) amidinato-guanidinate [DippNC(nBu)NDipp]Sn{pTol-NC[N(SiMe3)2]N-pTol}. Main Group Metal Chemistry, 2014, 37, .	1.6	4
138	Reduction of C,N-chelated chloroborane: straightforward formation of the unprecedented 1H-2,1-benzazaborolyl potassium salt. Dalton Transactions, 2014, 43, 9012-9015.	3.3	11
139	Comparison of reactivity of <i>C</i> , <i>N</i> -chelated and Lappert's stannylenes with trimethylsilylazide. Canadian Journal of Chemistry, 2014, 92, 434-440.	1.1	12
140	Oxidative Addition of Diorgano Disulfides to Distannyne [{2,6â€(Me ₂ NCH ₂) ₂ C ₆ H ₃ }Sn] ₂ . European Journal of Inorganic Chemistry, 2014, 2014, 310-318.	2.0	11
141	Reactivity of low-oxidation state tin compounds: an overview of the benefits of combining DFT Theory and experimental NMR spectroscopy. Canadian Journal of Chemistry, 2014, 92, 447-461.	1.1	1
142	The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angewandte Chemie, 2014, 126, 10303-10306.	2.0	26
143	Intramolecularly C,N-Coordinated Homo- and Heteroleptic Organostannylenes. Organometallics, 2014, 33, 6778-6784.	2.3	11
144	Response toHeterocyclic tautomerism: reassignment of two crystal structures of 2-amino-1,3-thiazolidin-4-one derivativesby Gzellaet al.(2014). Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 833-833.	0.5	O

#	Article	IF	CITATIONS
145	Structure and potential applications of amido lanthanide complexes chelated by bifunctional \hat{l}^2 -diketiminate ligand. Journal of Organometallic Chemistry, 2014, 759, 1-10.	1.8	20
146	Dimers of Nâ∈Heterocyclic Carbene Copper, Silver, and Gold Halides: Probing Metallophilic Interactions through Electron Density Based Concepts. Chemistry - A European Journal, 2014, 20, 734-744.	3.3	42
147	Reduction of 3â€Aminoquinolineâ€2,4(1 <i>H</i> ,3 <i>H</i>)â€diones and Deamination of the Reaction Products. Helvetica Chimica Acta, 2014, 97, 595-612.	1.6	9
148	Synthesis and structure of N,C-chelated organoantimony(v) and organobismuth(v) compounds. Dalton Transactions, 2014, 43, 505-512.	3.3	18
149	Organotin(IV) compounds containing N,C,O-chelating ligand. Inorganica Chimica Acta, 2014, 410, 20-28.	2.4	3
150	Structural diversity of two 1,2,4-triazole based N -heterocyclic carbene complexes of silver(I). Inorganic Chemistry Communication, 2014, 48, 103-106.	3.9	4
151	Non-covalent interactions in coinage metal complexes of 1,2,4-triazole-based N-heterocyclic carbenes. Dalton Transactions, 2014, 43, 15465-15474.	3.3	22
152	Synthesis of heteroboroxines with MB2O3 core (M = Sb, Bi, Sn) $\hat{a}\in$ "an influence of the substitution of parent boronic acids. Dalton Transactions, 2014, 43, 7096.	3.3	16
153	The reactivity of N,C,N-intramolecularly coordinated antimony(III) and bismuth(III) oxides with the sterically encumbered organoboronic acid 2,6-i-Pr2C6H3B(OH)2. Journal of Organometallic Chemistry, 2014, 772-773, 287-291.	1.8	12
154	From C,N- and N,N-chelated chloroboranes to substituted 1H-2,1-benzazaboroles and 1H-pyrrolo[1,2-c][1,3,2]diazaborolidines: a straightforward route to five-membered rings containing the $B\hat{a}\in \mathbb{N}$ or $N\hat{a}\in \mathbb{N}$ moiety. Dalton Transactions, 2014, 43, 12678-12688.	3.3	17
155	The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angewandte Chemie - International Edition, 2014, 53, 10139-10142.	13.8	124
156	Palladium(II) Complexes of 1,2,4-Triazole-Based $\langle i \rangle N \langle j \rangle$ -Heterocyclic Carbenes: Synthesis, Structure, and Catalytic Activity. Organometallics, 2014, 33, 3108-3118.	2.3	25
157	Silver Salt of 4,6-Diazido-N -nitro-1,3,5-triazine-2-amine - Characterization of this Primary Explosive. Propellants, Explosives, Pyrotechnics, 2014, 39, 251-259.	1.6	14
158	Tetrylenes chelated by bifunctional βâ€diketiminate ligand: structure and possible applications. Applied Organometallic Chemistry, 2014, 28, 405-412.	3.5	12
159	Reactivity Studies on an Intramolecularly Coordinated Organotin(IV) Carbonate. Organometallics, 2014, 33, 3021-3029.	2.3	15
160	Role of Steric Hindrance in the Newman-Kwart Rearrangement and in the Synthesis and Photophysical Properties of Arylsulfanyl Tetrapyrazinoporphyrazines. Journal of Organic Chemistry, 2014, 79, 2082-2093.	3.2	37
161	Reactivity of Bis(organoamino)phosphanes with Aluminum(III) Compounds: Straightforward Access to Diiminophosphinates by Means of Hydrogen-Atom Migration - An Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2014, 2014, 5193-5203.	2.0	8
162	Deamination of N→Snâ€Coordinated Organotin(II) Hydroxide: Formation of a New C–O Covalent Bond. European Journal of Inorganic Chemistry, 2014, 2014, 5266-5270.	2.0	10

#	Article	IF	Citations
163	Hydrosilylation Induced by N→Si Intramolecular Coordination: Spontaneous Transformation of Organosilanes into 1â€Azaâ€Siloleâ€Type Molecules in the Absence of a Catalyst. Chemistry - A European Journal, 2014, 20, 2542-2550.	3.3	23
164	O,N-Chelated germanium, tin and lead compounds containing 2-[N,N-(dimethylamino)methyl]phenolate as ligand. Journal of Organometallic Chemistry, 2013, 733, 71-78.	1.8	13
165	Preparation and structure of tin(IV) catecholates by reactions of C,N-chelated tin(IV) compounds with a catechol or lithium catecholate, and various stannylenes with a quinone. Journal of Organometallic Chemistry, 2013, 745-746, 25-33.	1.8	11
166	Expanding the structural chemistry of the weakly coordinating closo-carborane CB11H12 \hat{a} ?: its monoiodo derivatives with and without C 5v symmetry. Structural Chemistry, 2013, 24, 927-932.	2.0	6
167	Reactivity of C,N-chelated organoboron compounds with lithium anilides – formation of unexpected 1,2,3-trisubstituted 1H-2,1-benzazaboroles. Dalton Transactions, 2013, 42, 6417.	3.3	14
168	Reaction of 4-hydroxy-2-quinolones with thionyl chlorideâ€"preparation of new spiro-benzo[1,3]oxathioles and their transformations. Tetrahedron, 2013, 69, 492-499.	1.9	6
169	Nâ†'As intramolecularly coordinated organoarsenic(III) chalcogenides: Isolation of terminal Asâ€"S and Asâ€"Se bonds. Journal of Organometallic Chemistry, 2013, 723, 10-14.	1.8	8
170	Vanadocene complexes of amino acids bearing functional group in the side chain. Inorganica Chimica Acta, 2013, 405, 121-127.	2.4	8
171	Opening of the azastibol heterocycle with various acids: Isolation of novel N,C-chelated organoantimony(III) compounds. Journal of Organometallic Chemistry, 2013, 743, 156-162.	1.8	6
172	Oxidative addition of organic disulfides to low valent N,C,N-chelated organobismuth(I) compound: Isolation, structure and coordination capability ofÂsubstituted bismuth(III) bis(arylsulfides). Journal of Organometallic Chemistry, 2013, 740, 98-103.	1.8	29
173	Synthesis, structure, absorption and fluorescence of Pechmann dye heteroanalogues. Dyes and Pigments, 2013, 98, 530-539.	3.7	17
174	Quest for lithium amidinates containing adjacent amino donor group at the central carbon atom. Journal of Organometallic Chemistry, 2013, 745-746, 186-189.	1.8	16
175	Carbon Insertion into arachno-6,9-C2B8H14 via Acyl Chlorides. Skeletal Alkylcarbonation (SAC) Reactions: A New Route for Tricarbollides. Inorganic Chemistry, 2013, 52, 9087-9093.	4.0	6
176	Mixed Organotin(IV) Chalcogenides: From Molecules to Snâ€Sâ€Se Semiconducting Thin Films Deposited by Spinâ€Coating. Chemistry - A European Journal, 2013, 19, 1877-1881.	3.3	25
177	Quest for triorganotin(IV) compounds containing three C,N- and N,C,N-chelating ligands. Journal of Organometallic Chemistry, 2013, 732, 47-57.	1.8	10
178	Stabilization of Three-Coordinated Germanium(II) and Tin(II) Cations by a Neutral Chelating Ligand. Organometallics, 2013, 32, 1995-1999.	2.3	50
179	Synthesis and Structural Characterization of Heteroboroxines with MB ₂ O ₃ Core (M = Sb, Bi, Sn). Inorganic Chemistry, 2013, 52, 1424-1431.	4.0	22
180	Oxidative Addition of Diphenyldichalcogenides PhEEPh (E = S, Se, Te) to Low-Valent CN- and NCN-Chelated Organoantimony and Organobismuth Compounds. Organometallics, 2013, 32, 239-248.	2.3	66

#	Article	IF	Citations
181	Combined NMR and DFT Study on the Complexation Behavior of Lappert's Tin(II) Amide. Organometallics, 2013, 32, 2121-2134.	2.3	28
182	Unusual Reactivity of a C,N-Chelated Stannylene with Siloxanes and Silanols. Organometallics, 2013, 32, 2398-2405.	2.3	12
183	1,4â€Phenylene and 2,5â€Thienylene Ï€â€Linkers in Chargeâ€Transfer Chromophores. Asian Journal of Organic Chemistry, 2013, 2, 422-431.	2.7	43
184	Activation of E–Cl bonds (E = C, Si, Ge and Sn) by a C,N-chelated stannylene. Dalton Transactions, 2013, 42, 7660.	3.3	22
185	A New Solvated Phosphoric Triamide, [(C6H4(3-CH3)NH)3P(O)] · (C2H5OH): A Database Analysis of N Atom Geometry in Compounds with an [N]3P(O) Fragment. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 224-231.	1.6	5
186	Three Isomers of Aryl-Substituted Twelve-Vertex Ferratricarbollides. Organometallics, 2013, 32, 377-379.	2.3	9
187	Ferroceneâ€Donor and 4,5â€Dicyanoimidazoleâ€Acceptor Moieties in Chargeâ€Transfer Chromophores with π Linkers Tailored for Secondâ€Order Nonlinear Optics. Chemistry - an Asian Journal, 2013, 8, 465-475.	3.3	60
188	Intramolecularly Coordinated Group 14 and 15 Chalcogenites. Organometallics, 2013, 32, 157-163.	2.3	26
189	Amino Group Functionalized N-Heterocyclic 1,2,4-Triazole-Derived Carbenes: Structural Diversity of Rhodium(I) Complexes. Organometallics, 2013, 32, 7234-7240.	2.3	9
190	Scalable Synthesis of 1,1-Diamino-2,2-dinitroethene Without Hazardous Intermediates or by-Products. Journal of Energetic Materials, 2013, 31, 87-99.	2.0	15
191	Structure of \hat{l}^2 -diketiminates and \hat{l}^2 -aminoketones made from anisidines or chloroanilines: tin and lithium complexes. Main Group Metal Chemistry, 2012, 35, .	1.6	9
192	Borane complex of amino-functionalized phosphine. Main Group Metal Chemistry, 2012, 35, .	1.6	0
193	Reactivity of lithium n-butyl amidinates towards group 14 metal(ii) chlorides providing series of hetero- and homoleptic tetrylenes. Dalton Transactions, 2012, 41, 5010.	3.3	40
194	Half-pseudoferrocene cations from nucleophilic addition of o-carboranyl anions to the $[(\hat{l}\cdot 6\text{-mesitylene})2\text{Fe}]2+\text{dication}$. Dalton Transactions, 2012, 41, 7151.	3.3	2
195	Addition of Lappert's Stannylenes to Carbodiimides, Providing a New Class of Tin(II) Guanidinates. Organometallics, 2012, 31, 2203-2211.	2.3	34
196	Reversible CO2 fixation by intramolecularly coordinated diorganotin(IV) oxides. Journal of Organometallic Chemistry, 2012, 699, 1-4.	1.8	29
197	C,N-chelated organotin(IV) trifluoromethanesulfonates: Synthesis, characterization and preliminary studies of its catalytic activity in the direct synthesis of dimethyl carbonate from methanol and CO2. Journal of Organometallic Chemistry, 2012, 708-709, 82-87.	1.8	22
198	Synthesis, structure, and fluxional behaviour of highly-substituted group 4 cyclopentadienyl arylaminate complexes. Journal of Organometallic Chemistry, 2012, 719, 64-73.	1.8	7

#	Article	IF	CITATIONS
199	Organoantimony(III) and organobismuth(III) sulfides and selenide stabilized by NCO chelating pincer type ligand. Journal of Organometallic Chemistry, 2012, 718, 78-81.	1.8	7
200	Phosphinimine complex of organotin(IV) compounds stabilized by O,C,O-chelating ligand. Journal of Organometallic Chemistry, 2012, 718, 38-42.	1.8	1
201	Can Aromatic π-Clouds Complex Divalent Germanium and Tin Compounds? A DFT Study. Organometallics, 2012, 31, 1605-1617.	2.3	26
202	Camphor-annelated imidazolines with various N1 and C2 pendants as tunable ligands for nitroaldol reactions. Tetrahedron: Asymmetry, 2012, 23, 1010-1018.	1.8	11
203	Monomeric organoantimony(iii) sulphide and selenide with terminal Sb–E bond (E = S, Se). Synthesis, structure and theoretical consideration. Dalton Transactions, 2012, 41, 5140.	3.3	21
204	Reactivity of NCN-Chelated (NCN =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Td (C ₆ H ₃ <td>>-2,6-(CH 2.3</td> <td>₂₁₈</td>	>-2,6-(CH 2.3	₂₁₈
205	Synthesis and Structure of NCNâ€Chelated Organobismuth(III) Bisâ€Pentasulfide. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 614-616.	1.2	14
206	Stabilization of an Intramolecularly Coordinated Stannylidenium Cation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1672-1675.	1.2	15
207	Synthesis, Structure and Transmetalation Activity of Various C,Y-Chelated Organogold(I) Compounds. European Journal of Inorganic Chemistry, 2012, 2012, 2578-02587.	2.0	10
208	Diphosphastannylenes: Precursors for Phosphorus-Phosphorus Coupling?. European Journal of Inorganic Chemistry, 2012, 2012, 2983-2987.	2.0	11
209	Characterization of 4,6-Diazido-N -nitro-1,3,5-triazine-2-amine. Propellants, Explosives, Pyrotechnics, 2012, 37, 275-281.	1.6	19
210	Synthesis and cytostatic activity of Pt(II) complexes of intramolecularly coordinated phosphine and stibine ligands. Applied Organometallic Chemistry, 2012, 26, 237-245.	3.5	20
211	<i>C,N</i> â€chelated organotin(IV) compounds as catalysts for transesterification and derivatization of dialkyl carbonates. Applied Organometallic Chemistry, 2012, 26, 293-300.	3.5	20
212	Organotin(IV) trifluoromethanesulfonates chemistry: Isolation and characterization of a new di-n-butyl derivative presenting a Sn3O3 core. Inorganica Chimica Acta, 2012, 380, 50-56.	2.4	6
213	Four-coordinate organoboron compounds from \hat{l}^2 -enaminonitriles and diazonium salts. Tetrahedron, 2012, 68, 2052-2060.	1.9	14
214	The structures of cobalt(II) and copper(II) complexes derived from 6-(4,5-dihydro-1H-imidazol-5-on-2-yl)pyridine-2-carboxylic acid. Polyhedron, 2012, 34, 31-40.	2.2	7
215	Structure–Property Relationships and Nonlinear Optical Effects in Donorâ€5ubstituted Dicyanopyrazineâ€Derived Push–Pull Chromophores with Enlarged and Varied Ï€â€Linkers. European Journal of Organic Chemistry, 2012, 2012, 529-538.	2.4	95
216	Intramolecularly Coordinated Stannanechalcogenones: X-ray Structure of [2,6-(Me ₂ NCH ₂) ₂ C ₆ H ₃](Ph)Snâ•Te. Organometallics, 2011, 30, 5904-5910.	2.3	20

#	Article	IF	CITATIONS
217	Additive Character of Electron Donation by Methyl Substituents within a Complete Series of Polymethylated [1-(\hat{i} -6-MenC6H6 \hat{a} - \hat{a} -10-10-10-10-10-10-10-10-10-10-10-10-10-	4.0	9
218	TFP as a ligand in Au(i)-catalyzed dihydropyran synthesis. Unprecedented rearrangement of dihydropyrans into cyclopentenones. Chemical Communications, 2011, 47, 9390.	4.1	18
219	Thermal isomerization of î·6-arene ferradicarbolllides. Experimental proof for isolobal relation between (î·6-arene)Fe and (î·5-cyclopentadienyl)Co cluster units. Dalton Transactions, 2011, 40, 6623.	3.3	5
220	Polymethylated [Fe($\hat{\mathbf{l}}$ -6-arene)2]2+ dications: methyl-group rearrangements and application of the EINS mechanism. Dalton Transactions, 2011, 40, 5916.	3.3	7
221	Chromiumpentacarbonyl-Coordinated Organotin(II) Cation. Organometallics, 2011, 30, 2405-2410.	2.3	34
222	NCN-Chelated Organoantimony(III) and Organobismuth(III) Phosphates: Synthesis and Solid-State and Solution Structures. Inorganic Chemistry, 2011, 50, 6411-6413.	4.0	19
223	Acetylferrocene–2-chloro-1-ferrocenylethanone (1/1). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1447-m1448.	0.2	2
224	Tetrylenes Chelated by Hybrid Amido–Amino Ligand: Derivatives of 2-[(<i>N</i> , <i>N</i> -Dimethylamino)methyl]aniline. Inorganic Chemistry, 2011, 50, 9454-9464.	4.0	24
225	OCO and NCO chelated derivatives of heavier group 15 elements. Study on possibility of cyclization reaction via intramolecular ether bond cleavage. Dalton Transactions, 2011, 40, 8922.	3.3	35
226	Synthesis and properties of acetamidinium salts. Chemistry Central Journal, 2011, 5, 84.	2.6	7
227	Crystal Structures of Two Aromatic Zinc(II) Carboxylates: [Zn(4-Chlorosalicylato)2(H2O)4]·2theophylline·(H2O)2 and Unique [Zn(5-Chlorosalicylato)2(isonicotinamide)2(H2O)]. Journal of Chemical Crystallography, 2011, 41, 1077-1084.	1.1	8
228	Some new information on the formation of substituted 4â€aminoâ€1â€substituted phenylâ€1 <i>H</i> à6€pyrazole from βâ€enaminones and diazonium tetrafluoroborates. Journal of Heterocyclic Chemistry, 2011, 48, 780-786.	2s 2.6	4
229	Strontium Methylphosphonate Trihydrate: An Example of a New Class of Host Materials for Intercalation Reactions $\hat{a} \in \mathbb{C}$ Synthesis, Structure and Intercalation Behavior. European Journal of Inorganic Chemistry, 2011, 2011, 850-859.	2.0	5
230	On the Reduction of NC Chelated Organoantimony(III) Chlorides. European Journal of Inorganic Chemistry, 2011, 2011, 2380-2386.	2.0	38
231	Palladium(II) complexes of Y,C,Yâ€chelated phosphines: synthesis, structure, and catalytic activity in Suzuki–Miyaura reaction. Applied Organometallic Chemistry, 2011, 25, 173-179.	3.5	7
232	<i>S</i> , <i>N</i> êChelated organotin(IV) compounds containing 6â€phenylpyridazineâ€3â€thiolate ligandâ€"structural, antibacterial and antifungal study. Applied Organometallic Chemistry, 2011, 25, 725-734.	3.5	9
233	Oxidation of Intramolecularly Coordinated Distannyne by S ₈ : From Tin(I) to Tin(IV) Polysulfide Via Tin(II) Sulfide. Chemistry - A European Journal, 2011, 17, 450-454.	3.3	42
234	Intramolecularly Coordinated Tin(II) Selenide and Triseleneoxostannonic Acid Anhydride. Chemistry - A European Journal, 2011, 17, 455-459.	3.3	41

#	Article	IF	CITATIONS
235	Intramolecularly Coordinated [{2,6â€(Me ₂ NCH ₂) ₂ C ₆ H ₃ }Sn ^{II}]< A Strong Ïf Donor for Pt ^{II} . Chemistry - A European Journal, 2011, 17, 7423-7427.	รนุ ม 8+ <td>ıp3#</td>	ıp 3 #
236	Skeletal Alkylcarbonation (SAC) Reactions as a Simple Design for Cluster–Carbon Insertion and Crossâ€Coupling: Highâ€Yield Access to Substituted Tricarbollides from 6,9â€Dicarbaâ€∢i>arachno⟨/i>â€decaborane(14). Chemistry - A European Journal, 2011, 17, 13156-13159.	3.3	10
237	C,N-chelated organotin(IV) trifluoroacetates. Instability of the mono- and diorganotin(IV) derivatives Journal of Organometallic Chemistry, 2011, 696, 676-686.	1.8	27
238	Synthesis, structural characterization and electrochemistry of C,N-chelated organotin(IV) dicarboxylates with ferrocenyl substituents. Journal of Organometallic Chemistry, 2011, 696, 1809-1816.	1.8	15
239	Structure and properties of lithium n-butyl amidinates. Journal of Organometallic Chemistry, 2011, 696, 2346-2354.	1.8	35
240	Alternative syntheses and X-ray diffraction analyses of the parent tricarbaborane compounds [nido-7,8,9-C3B8H11] \hat{a} , [nido-7,8,10-C3B8H11] \hat{a} and [1-(\hat{l} -5-C5H5)-closo-1,2,4,10-FeC3B8H11]. Journal of Organometallic Chemistry, 2011, 696, 2742-2745.	1.8	8
241	N,N′,N′′,N′′′′-Tetrakis(2-methylphenyl)oxybis(phosphonic diamide): a redetermination at 150â€. radiation. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o450-o451.	K with M 0.2	οϏĴ±
242	Use of C,N-chelated triorganotin(IV) fluoride for fluorination of organic compounds, coordination compounds, phosphines, silanes and stannanes. Main Group Metal Chemistry, 2011, 34, .	1.6	8
243	Structure, properties and comparison of C,N-chelated and amido-stabilized plumbylenes. Collection of Czechoslovak Chemical Communications, 2010, 75, 121-131.	1.0	11
244	C,N-chelated dicyclopentadienylzirconium complexes and their possible use as hydrogenation catalysts. Inorganic Chemistry Communication, 2010, 13, 1512-1514.	3.9	6
245	Condensation of aromatic aldehydes with N,N-dimethylacetamide in presence of dialkyl carbonates as dehydrating agents. Monatshefte Für Chemie, 2010, 141, 205-211.	1.8	4
246	Synthesis, copper(II) complexes and catalytic activity of substituted 6-(1,3-oxazolin-2-yl)pyridine-2-carboxylates. Transition Metal Chemistry, 2010, 35, 363-371.	1.4	7
247	NCNâ€Chelated Organoantimony(III) and Organobismuth(III) Phosphonates: Syntheses and Structures. European Journal of Inorganic Chemistry, 2010, 2010, 1663-1669.	2.0	25
248	NCN Chelated Organoantimony(III) and Organobismuth(III) Phosphinates and Phosphites: Synthesis, Structure and Reactivity. European Journal of Inorganic Chemistry, 2010, 2010, 5222-5230.	2.0	28
249	Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures. Angewandte Chemie - International Edition, 2010, 49, 5468-5471.	13.8	152
250	Vanadocene complexes of amino acids containing secondary amino group: The first evidence of O,O-bonded carboxylic group to vanadocene(IV) moiety. Journal of Inorganic Biochemistry, 2010, 104, 936-943.	3.5	12
251	Preparation and structural characterization of simple and donor-substituted triorganostannyl $1\hat{a}\in \mathbb{C}^2$ -(diphenylphosphino)-1-ferrocenecarboxylates and their P-chalcogenide derivatives. Journal of Organometallic Chemistry, 2010, 695, 271-279.	1.8	13
252	Structural study on the organoantimony(III) NCN – Chelated compounds [2,6-(Me2NCH2)2C6H3]SbX2 – Influence of the polar group X. Journal of Organometallic Chemistry, 2010, 695, 392-397.	1.8	17

#	Article	IF	Citations
253	Reduction of C,N-chelated Diorganotin(IV) Dichlorides. Journal of Organometallic Chemistry, 2010, 695, 1843-1847.	1.8	15
254	Structural study of di- and triorganotin(IV) dicarboxylates containing one double bond. Journal of Organometallic Chemistry, 2010, 695, 2493-2498.	1.8	6
255	Tri- and diorganostannates containing 2-(N,N-dimethylaminomethyl)phenyl ligand. Journal of Organometallic Chemistry, 2010, 695, 2475-2485.	1.8	22
256	Aminostannanes and aminostannylenes containing a C,N-chelated ligand. Journal of Organometallic Chemistry, 2010, 695, 2651-2657.	1.8	18
257	Synthesis of Me2LSn(o-CH3–C2B10H10): Crystal structure of Snâ†⊙ intramolecularly coordinated organotin compound containing 1-methyl-o-carborane. Inorganica Chimica Acta, 2010, 363, 2051-2054.	2.4	7
258	Synthesis and structure of Sbâ†O intramolecularly coordinated ethynylstibanes. Inorganica Chimica Acta, 2010, 363, 1607-1610.	2.4	7
259	Synthesis of organophosphorus compounds containing different Y,C,Y-chelating ligands. Crystal structure of Pâ†N intramolecularly coordinated diselenoxophosphorane. Inorganica Chimica Acta, 2010, 363, 3302-3307.	2.4	5
260	Reaction of 3-phenyl-3-aminoquinoline-2,4-diones with isothiocyanates. Facile access to novel spiro-linked 2-thioxoimidazolidine-oxindoles and imidazoline-2-thiones. Tetrahedron, 2010, 66, 2015-2025.	1.9	10
261	An unprecedented rearrangement of salicylanilide derivatives: imidazolinone intermediate formation. Tetrahedron Letters, 2010, 51, 23-26.	1.4	8
262	Push-pull molecules with a systematically extended π-conjugated system featuring 4,5-dicyanoimidazole. Dyes and Pigments, 2010, 85, 57-65.	3.7	60
263	Double O,C,O-chelated diorganotin(IV) cation. Inorganic Chemistry Communication, 2010, 13, 1470-1472.	3.9	5
264	Crystallography and Structure-Property Relationships in 2,2′,2″,2′′′,4,4′,4″,4′′′,6,6′Quaterphenyl (DODECA). Propellants, Explosives, Pyrotechnics, 2010, 35, 339-346.	² ,6″,6â€ 1.6	i²ĝ€²â€²-Do
265	Crystallography and Structure–Property Relationships of 2,2″,4,4′,4″,6,6′,6″â€Octanitroâ€1,1′ (ONT). Propellants, Explosives, Pyrotechnics, 2010, 35, 130-135.	: 3â€ 1.6	² ₅ 1″â€₹er
266	Diacetamidinium sulfate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3346-o3347.	0.2	3
267	Ionic Compound [Me2Sn{C6H3(CH2NMe2)2-2,6}]+[Me3SnCl2] Main Group Metal Chemistry, 2010, 33, .	1.6	2
268	1,2-Disubstituted Hexahydro-1H-benzo[d]imidazoles: Synthesis, Characterization, and Stability. Synthesis, 2010, 2010, 3934-3940.	2.3	1
269	NCO-Chelated organoantimony(III) and organobismuth(III) dichlorides: Syntheses and structures. Collection of Czechoslovak Chemical Communications, 2010, 75, 1041-1050.	1.0	15
270	[2 + 2] Cycloaddition of Carbon Disulfide to NCN-Chelatedâ€Organoantimony(III) and Organobismuth(III) Sulfides: Evidence for Terminal Sbâ^'S and Biâ^'S Bonds in Solution‡. Organometallics, 2010, 29, 4486-4490.	2.3	40

#	Article	IF	CITATIONS
271	Crystal Structure of Polymeric 2-(Dimethylaminomethyl)Phenyl Phenyltin(IV) Difluoride. Main Group Metal Chemistry, 2009, 32, .	1.6	1
272	Novel Charge-Transfer Chromophores Featuring Imidazole as π-Linkage. Heterocycles, 2009, 78, 999.	0.7	12
273	Molecular Rearrangement of 9bâ€Hydroxyâ€1 <i>H</i> à€imidazo[4,5â€ <i>c</i>)]quinolineâ€2,4â€diones – A Convenient Pathway to Spiroâ€Linked Imidazolidine–Oxindole Derivatives. Helvetica Chimica Acta, 2009, 92, 689-708.	1.6	16
274	Reactivity of C,Nâ€Chelated Stannylene with Azobenzene. European Journal of Inorganic Chemistry, 2009, 2009, 2058-2061.	2.0	22
275	Efficient synthesis of 5â€(2â€hydroxyethyl)â€2â€phenylimino―1,3â€thiazolidinâ€4â€ones and 5â€(2â€hydroxyethyl)â€2â€phenylaminoâ€4,5â€dihydroâ€1,3â€thiazolâ€4â€ones. Journal of Heterocyclic Chemi 635-639.	is zrø , 2009	9,246,
276	Hydrolysis of <i>C</i> , <i>N</i> â€chelated diorganotin(IV) chlorides and catalysis of transesterification reactions. Applied Organometallic Chemistry, 2009, 23, 253-257.	3.5	11
277	Reaction of 1-substituted 3-aminoquinoline-2,4-diones with isothiocyanates. An easy pathway to generate novel 2-thioxo-1′H-spiro[imidazoline-5,3′-indole]-2,2′-diones. Tetrahedron, 2009, 65, 4908-4916	5. ^{1.9}	17
278	Synthesis of 2-thioxoimidazolines via reaction of 1-unsubstituted 3-aminoquinoline-2,4-diones with isothiocyanates. Tetrahedron, 2009, 65, 9103-9115.	1.9	12
279	Organic salts of dinitromethane. Tetrahedron, 2009, 65, 7163-7170.	1.9	14
280	Probing electronic and regioisomeric control in an asymmetric Henry reaction catalyzed by camphor-imidazoline ligands. Tetrahedron Letters, 2009, 50, 3042-3045.	1.4	21
281	cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), its properties and initiation reactivity. Journal of Hazardous Materials, 2009, 164, 954-961.	12.4	57
282	Reactivity of di-n-butyl-dicyclopentadienylzirconium towards amido stabilized stannylenes. Journal of Organometallic Chemistry, 2009, 694, 1263-1265.	1.8	8
283	C,N-chelated hexaorganodistannanes, and triorganotin(IV) hydrides and cyclopentadienides. Journal of Organometallic Chemistry, 2009, 694, 3000-3007.	1.8	26
284	Reactivity of a C,N-chelated stannylene with chalcogens. Journal of Organometallic Chemistry, 2009, 694, 2871-2874.	1.8	17
285	Synthesis and characterization of copper 4-carboxyphenylphosphonates. Journal of Solid State Chemistry, 2009, 182, 3155-3161.	2.9	12
286	The current dye intermediate market – A cautionary tale and detective story; characterization and unambiguous synthesis of 5-amino-4-chloro-2,7-dimethyl-1H-benzimidazole. Dyes and Pigments, 2009, 81, 113-118.	3.7	1
287	Synthesis of Hexahelicene and 1-Methoxyhexahelicene via Cycloisomerization of Biphenylyl-Naphthalene Derivatives. Journal of Organic Chemistry, 2009, 74, 3090-3093.	3.2	64
288	The Stannylene {2,6-(Me ₂ NCH ₂) ₂ C ₆ H ₃ }SnCl as a Ligand in Transition Metal Complexes of Palladium, Ruthenium, and Rhodium. Organometallics, 2009, 28, 4823-4828.	2.3	36

#	Article	IF	CITATIONS
289	Systematic Method for the Incorporation of the $\{(\hat{l}\cdot 6\text{-Arene})\text{Fe}\}$ Fragment into Carborane Cages via $[(\hat{l}\cdot 6\text{-Arene})\text{Fe}]2+$ Dications. A Series of $[3\cdot(\hat{l}\cdot 6\text{-Arene})\text{-closo-}3,1,2\text{-FeC2B9H11}]$ Complexes. Reliable Synthesis of Polymethylated $[(\hat{l}\cdot 6\text{-Arene})2\text{Fe}]2+$ Cations. Inorganic Chemistry, 2009, 48, 10904-10906.	4.0	9
290	Reactivity of a C,N-Chelated Stannoxane. Organometallics, 2009, 28, 2629-2632.	2.3	41
291	Reactions of C,N-chelated Tin(II) and Lead(II) Compounds with Zirconocene Dichloride Derivatives. Organometallics, 2009, 28, 3105-3108.	2.3	33
292	Nonconventional Behavior of NCN-Chelated Organoantimony(III) Sulfide and Isolation of Cyclic Organoantimony(III) Bis(pentasulfide). Inorganic Chemistry, 2009, 48, 10495-10497.	4.0	35
293	Synthesis and Structural Study on Organoantimony(III) and Organobismuth(III) Hydroxides Containing an NCN Pincer Type Ligandâ€. Organometallics, 2009, 28, 5522-5528.	2.3	49
294	Synthesis of [{2,6-(Me ₂ NCH ₂) ₂ C ₆ H ₃ }Sn(OH)O] ₆ <td>b≱.3</td> <td>20</td>	b≱.3	20
295	Efficient and Reversible Fixation of Carbon Dioxide by NCN-Chelated Organoantimony(III) Oxide. Organometallics, 2009, 28, 2633-2636.	2.3	60
296	Synthesis, Structure, and Reactivity of Intramolecularly Coordinated Organoantimony and Organobismuth Sulfides. Organometallics, 2009, 28, 1934-1941.	2.3	45
297	(3RS)-S-[1-(3-Chlorophenyl)-2-oxopyrrolidin-3-yl]thiouronium bromide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o411-o412.	0.2	3
298	Triorganotin(IV) esters of 2-{[<i>N</i> -(2-oxo-2H-naphthalene-1-yliden)hydrazo]}benzoic acid, instability of the cyclohexyl derivative. Journal of Coordination Chemistry, 2009, 62, 1525-1535.	2.2	7
299	(3RS)-S-[1-(3-Chlorophenyl)-2-oxopyrrolidin-3-yl]-N,N′-dimethylthiouronium bromide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o413-o413.	0.2	3
300	Stable Triazenes Derived from 2â€Alkylaminonaphthalenes and 5â€Nitrobenzo[<i>c</i>)â€1,2â€thiazoleâ€3â€diazonium Hydrogensulfate. European Journal of Organic Chemistr 2008, 2008, 3272-3278.	ry 2. 4	8
301	C,Nâ€chelated triorganotin(IV) diesters of 4â€ketopimelic acid and their fungicidal activity. Applied Organometallic Chemistry, 2008, 22, 308-313.	3.5	12
302	Copper(II) complexes derived from substituted 2,2′-bis-(4-isopropyl-4-methyl-4,5-dihydro-1H-imidazol-5-one) ligands: Synthesis, structure and catalytic activity. Polyhedron, 2008, 27, 268-274.	2.2	9
303	The differences in solid state structures of C,N-chelated nbutyltin(IV) fluorides. Journal of Organometallic Chemistry, 2008, 693, 2937-2941.	1.8	13
304	The synthesis of organoantimony(III) difluorides containing Y,C,Y pincer type ligands using organotin(IV) fluorinating agents. Journal of Fluorine Chemistry, 2008, 129, 167-172.	1.7	25
305	Synthesis of (R)- and (S)-2-N-methylamino-2,3-dimethylbutanamides and (R)- and (S)-(5-isopropyl-1,5-dimethyl-4,5-dihydro-1H-imidazol-4-on-2-yl)pyridines. Tetrahedron: Asymmetry, 2008, 19, 384-390.	1.8	9
306	Use of C,N-chelated di-n-butyltin(IV) fluoride for the synthesis of acyl fluorides, fluoroformates and fluorophosgene. Tetrahedron Letters, 2008, 49, 6320-6323.	1.4	36

#	Article	lF	CITATIONS
307	Syntheses and Structures of Ar3Sb5 and Ar4Sb4 Compounds (Ar = C6H3-2,6-(CH2NMe2)2). Organometallics, 2008, 27, 2169-2171.	2.3	42
308	Synthesis and Structure of Organoantimony(III) Compounds Containing Antimonyâ [°] Selenium and â [°] Tellurium Terminal Bonds. Organometallics, 2008, 27, 6059-6062.	2.3	44
309	Solvent-Controlled Ring Size in Double C,N-Chelated Stannoxanes. Organometallics, 2008, 27, 5303-5308.	2.3	29
310	Crystallography of $2,2\hat{a}\in^2$, $4,4\hat{a}\in^2$, $6,6\hat{a}\in^2$ -Hexanitro- $1,1\hat{a}\in^2$ -biphenyl and Its Relation to Initiation Reactivity. Chemof Materials, 2008, 20, 3105-3109.	istry 6.7	9
311	Structure of C, N-Chelated N-Butyltin(IV) Chlorides. Main Group Metal Chemistry, 2008, 31, .	1.6	12
312	Structure of C, N-Chelated Vinyltin(IV) Compounds. Main Group Metal Chemistry, 2008, 31, .	1.6	0
313	3-(4-Methoxybenzoyl)propionic acid. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2197-o2197.	0.2	1
314	Methyl 2,5-dichlorobenzoate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1970-o1970.	0.2	3
315	1-(3-Chlorobenzyl)-5-iodoindoline-2,3-dione. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2223-o2223.	0.2	2
316	(E)-3-(3,5-Dimethoxyphenyl)acrylohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1943-o1943.	0.2	0
317	3-(3-Chlorobenzyl)-1H-isochromen-1-one. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2018-o2018.	0.2	4
318	2-[(4-Chlorobenzyl)carbonylmethyl]benzoic acid. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2205-o2205.	0.2	0
319	3-(3-Fluorobenzyl)-1H-isochromen-1-one. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2266-o2266.	0.2	2
320	2-(2-Fluorobenzoylmethyl)benzoic acid. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2267-o2267.	0.2	0
321	3-(3-Methoxybenzyl)-4-(2-methoxyphenyl)-1H-1,2,4-triazole-5(4H)-thione. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2345-o2346.	0.2	O
322	New Complexes of Molybdenum(II) and Tungsten(II) with a C,N-Chelated Stannylene. Collection of Czechoslovak Chemical Communications, 2007, 72, 629-636.	1.0	11
323	Synthesis and Structural Study of Organoantimony(III) and Organobismuth(III) Triflates and Cations Containing O,C,O-Pincer Type Ligandsâ€. Organometallics, 2007, 26, 2911-2917.	2.3	53
324	Aryl ethyl ethers prepared by ethylation using diethyl carbonate. Green Chemistry Letters and Reviews, 2007, 1, 53-59.	4.7	14

#	Article	IF	CITATIONS
325	Organotin(IV) Derivatives of Some O,C,O-Chelating Ligands. Part 2. Organometallics, 2007, 26, 6312-6319.	2.3	17
326	PalladiumII Complexes of the (N,C,N)SnCl Stannylene. Organometallics, 2007, 26, 4102-4104.	2.3	31
327	Unexpected product formed by the reaction of [2,6-(MeOCH2)2C6H3]Li with SbCl3: Structure of Sb–O intramolecularly coordinated organoantimony cation. Journal of Organometallic Chemistry, 2007, 692, 2350-2353.	1.8	12
328	Mercapto derivatives of triorganotin Y,C,Y-pincer complexes: Role of Y,C,Y-chelating ligands in a new coordination mode of organotin compounds. Journal of Organometallic Chemistry, 2007, 692, 3415-3423.	1.8	16
329	Intramolecularly coordinated organotin(IV) sulphides and their reactivity to iodine. Journal of Organometallic Chemistry, 2007, 692, 3750-3757.	1.8	19
330	Intramolecularly coordinated organoantimony(III) carboxylates. Journal of Organometallic Chemistry, 2007, 692, 3969-3975.	1.8	23
331	Structure of N,C,N-chelated organotin(IV) fluorides. Journal of Organometallic Chemistry, 2007, 692, 4287-4296.	1.8	26
332	Products of hydrolysis of C,N-chelated triorganotin(IV) chlorides and use of products as catalysts in transesterification reactions. Journal of Organometallic Chemistry, 2007, 692, 5633-5645.	1.8	24
333	Structure of C, N-chelated nButyltin(IV) fluorides and their use as fluorinating agents of some chlorosilanes, chlorophosphine and metal halides. Journal of Fluorine Chemistry, 2007, 128, 1390-1395.	1.7	23
334	cis-Bis(tricyanomethanido-κN) [tris(2-aminoethyl)amine-κ4N] nickel(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2072-m2073.	0.2	3
335	$1\hat{a}$ €²-Acetylferrocene-1-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2145-m2146.	0.2	2
336	1-(3,4-Dichlorobenzoyl)ferrocene. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m3067-m3067.	0.2	2
337	2-Methoxy-2-methylimidazolidine-4,5-dione. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4704-o4704.	0.2	1
338	3-Hydroxybenzohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4829-o4829.	0.2	3
339	2-(3-Methoxyphenyl)acetohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4828-o4828.	0.2	1
340	Structural Diversity of Organoantimony(III) and Organobismuth(III) Dihalides Containing O,C,O-Chelating Ligands. Organometallics, 2006, 25, 4366-4373.	2.3	41
341	Structural Analysis of Ionic Organotin(IV) Compounds Using Electrospray Tandem Mass Spectrometry. Analytical Chemistry, 2006, 78, 4210-4218.	6.5	13
342	Unexpected Products in Reactions of Double-C,N-Chelated Diorganotin(IV) Dibromide with Cyclopentadienyl- and Fluorenyllithium. Collection of Czechoslovak Chemical Communications, 2006, 71, 294-301.	1.0	3

#	Article	IF	Citations
343	Organotin compounds: An ionophore system for fluoride ion recognition. Analytica Chimica Acta, 2006, 577, 91-97.	5.4	32
344	Structural study of bis(triorganotin(IV)) esters of 4-ketopimelic acid. Journal of Organometallic Chemistry, 2006, 691, 2631-2640.	1.8	16
345	Reactivity of intramolecularly coordinated aluminum compounds to R3EOH (E=Sn, Si). Remarkable migration of N,C,N and O,C,O pincer ligands. Journal of Organometallic Chemistry, 2006, 691, 35-44.	1.8	14
346	Copper(II) complexes containing chiral substituted 2-(4-isopropyl-4-methyl-4,5-dihydro-1H-imidazol-5-one-2-yl)pyridine ligands: Synthesis, X-ray structural studies and asymmetric catalysis. Journal of Organometallic Chemistry, 2006, 691, 2623-2630.	1.8	42
347	Higher-Nuclearity Group 14 Metalloid Clusters: [Sn9{Sn(NRR′)}6]. Angewandte Chemie - International Edition, 2006, 45, 4333-4337.	13.8	84
348	Cover Picture: Higher-Nuclearity Group 14 Metalloid Clusters: [Sn9{Sn(NRR′)}6] (Angew. Chem. Int. Ed.) Tj ET	Qq <u>Q</u> ,Q0 r	gBŢ /Overlocl
349	Structural study of C,N-chelated monoorganotin(IV) halides. Applied Organometallic Chemistry, 2006, 20, 226-232.	3.5	36
350	170 NMR spectra of some organotin(IV) compounds containing O,C,O-chelating ligands. Magnetic Resonance in Chemistry, 2006, 44, 171-173.	1.9	4
351	Double-C,N-chelated tri- and diorganotin(IV) fluorides. Journal of Fluorine Chemistry, 2005, 126, 1531-1538.	1.7	33
352	The novel organolithium O,C,O-pincer compound. Inorganica Chimica Acta, 2005, 358, 2422-2426.	2.4	14
353	Preparation and structures of [2-(dimethylamino)phenyl]diorganotin(IV) acetates substituted with organophosphorus groups in the α-position of the acetate ligand. Applied Organometallic Chemistry, 2005, 19, 118-124.	3.5	7
354	Structure of azo dye organotin(IV) compounds containing a C,N-chelating ligand, part II, and theirin vitroantifungal activity. Applied Organometallic Chemistry, 2005, 19, 500-509.	3.5	19
355	Aluminum alkyls with intramolecularly coordinated oxygen. Applied Organometallic Chemistry, 2005, 19, 797-802.	3.5	10
356	Structure and properties of double-C,N-chelated tri- and diorganotin(IV) halides. Applied Organometallic Chemistry, 2005, 19, 1101-1108.	3.5	46
357	Synthesis of new substituted 5â€methylâ€3,5â€diphenylimidazolidineâ€2,4â€diones from substituted 1â€(1â€cyanoethylâ€1â€phenyl)â€3â€phenylureas. Journal of Heterocyclic Chemistry, 2005, 42, 899-906.	2.6	7
358	Dibromobis[2-(N,N-dimethylaminomethyl)phenyl]tin(IV). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m2691-m2693.	0.2	7
359	Synthesis and Structure of Organoaluminuin O,C,O Pincer Compounds. Main Group Metal Chemistry, 2004, 27, .	1.6	2
360	Coordination behaviour of the 2-(N,N-dimethylaminomethyl)phenyl ligand towards the di-t-butylchlorotin(IV) moiety. Applied Organometallic Chemistry, 2004, 18, 241-243.	3.5	11

#	Article	IF	Citations
361	Structural analysis of 2,6-[bis(alkyloxy)methyl]-phenyltin derivatives using electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 621-629.	1.6	26
362	47, 49 Ti NMR spectra of half-sandwich titanium(IV) complexes. Magnetic Resonance in Chemistry, 2004, 42, 414-417.	1.9	9
363	New chiral ligands and iron(III) complexes based on 2,6-bis(1-benzyl-4-isopropyl-4-methyl-4,5-dihydro-1H-imidazol-5-on-2-yl)pyridines. Tetrahedron Letters, 2004, 45, 7723-7726.	1.4	26
364	Quest for Organotin(IV) Cations Containing O,C,O-Chelating Ligands. Organometallics, 2004, 23, 5300-5307.	2.3	51
365	Monomeric Triorganotin(IV) Fluorides Containing a C,N-Chelating Ligand. Organometallics, 2004, 23, 2967-2971.	2.3	41
366	Structural Study of 2,6-Bis[(dimethylaminomethyl)phenyl]butyl Stannanes: Nonconventional Behaviour of Triorganotin(IV) Halides. Chemistry - A European Journal, 2003, 9, 2411-2418.	3.3	34
367	Structure of azo dye organotin(IV) compounds containing a C,N-chelating ligand. Applied Organometallic Chemistry, 2003, 17, 168-174.	3.5	37
368	Structural Study of Tris(N,N-diethyldithiocarbamato-S,S')-3-methoxypropyltin(IV). Searching for Hypercoordinated Monoorganotin(IV) Species. Main Group Metal Chemistry, 2003, 26, .	1.6	4
369	Organotin(IV) Derivatives of Some O,C,O-Chelating Ligands. Organometallics, 2002, 21, 3996-4004.	2.3	71
370	1H,117 Sn J-HMBC spectroscopy as a tool for the determination of long-rangenJ (1H,117Sn) coupling constants in the investigation of intramolecular donor-acceptor interaction in [2-(N,N-dimethylaminomethyl)phenyl]stannanes. Magnetic Resonance in Chemistry, 2002, 40, 65-69.	1.9	31
371	Structure andin vitroantifungal activity of [2,6-bis(dimethylaminomethyl)phenyl]diphenyltin(IV) compounds. Applied Organometallic Chemistry, 2002, 16, 315-322.	3.5	68
372	{2,6-Bis[(dimethylamino)methyl]phenyl-N2,C1,N6}diphenyltin(II) bromide monohydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 373-374.	0.4	11
373	Solution and cross-polarization/magic angle spinning NMR investigation of intramolecular coordination Snî—,N in some organotin(IV) C,N-chelates. Inorganica Chimica Acta, 2001, 323, 163-170.	2.4	58
374	Structure of [2,6-bis(dimethylamino)methyl]phenyltin tribromide hydrate. Inorganic Chemistry Communication, 2001, 4, 257-260.	3.9	14
375	CRYSTAL STRUCTURE OF [2,6-BIS(DIMETHYLAMINOMETHYL)PHENYL]DIPHENYLTIN HEXAFLUOROPHOSPHATE:	1.6	5
376	119Sn, 15N, 13C, and 1H NMR Study of the Intramolecular Sn-N Donor-Acceptor Interaction in [2-(Dimethylaminomethyl)phenyl]stannanes. Collection of Czechoslovak Chemical Communications, 1998, 63, 977-989.	1.0	52
377	Synthesis and properties of 1,2,3-diazapnictol-5-yl substituted ferrocenes. New Journal of Chemistry, 0, , .	2.8	1