
Graziella Messina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1527747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophages in Skeletal Muscle Dystrophies, An Entangled Partner. Journal of Neuromuscular Diseases, 2022, 9, 1-23.	2.6	17
2	Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Experimental Cell Research, 2022, 410, 112968.	2.6	13
3	Selective ablation of <scp>Nfix</scp> in macrophages attenuates muscular dystrophy by inhibiting fibroâ€adipogenic progenitorâ€dependent fibrosis. Journal of Pathology, 2022, 257, 352-366.	4.5	5
4	Rebalancing expression of HMGB1 redox isoforms to counteract muscular dystrophy. Science Translational Medicine, 2021, 13, .	12.4	26
5	Synthesis and characterization of 13C labeled carnosine derivatives for isotope dilution mass spectrometry measurements in biological matrices. Talanta, 2021, 235, 122742.	5.5	2
6	The transcription factor NF-Y participates to stem cell fate decision and regeneration in adult skeletal muscle. Nature Communications, 2021, 12, 6013.	12.8	12
7	The Transcription Factor Nfix Requires RhoA-ROCK1 Dependent Phagocytosis to Mediate Macrophage Skewing during Skeletal Muscle Regeneration. Cells, 2020, 9, 708.	4.1	34
8	Nutritional intervention with cyanidin hinders the progression of muscular dystrophy. Cell Death and Disease, 2020, 11, 127.	6.3	15
9	The Switch from NF-YAl to NF-YAs Isoform Impairs Myotubes Formation. Cells, 2020, 9, 789.	4.1	10
10	The Danger Signal Extracellular ATP Is Involved in the Immunomediated Damage of α-Sarcoglycan–Deficient Muscular Dystrophy. American Journal of Pathology, 2019, 189, 354-369.	3.8	9
11	NF-YA enters cells through cell penetrating peptides. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 430-440.	4.1	3
12	Nuclear Factor One X in Development and Disease. Trends in Cell Biology, 2019, 29, 20-30.	7.9	36
13	Autologous Cell Therapy Approach for Duchenne Muscular Dystrophy using PiggyBac Transposons and Mesoangioblasts. Molecular Therapy, 2018, 26, 1093-1108.	8.2	23
14	Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of nextâ€generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO Molecular Medicine, 2018, 10, 254-275.	6.9	30
15	High mobility group box 1 orchestrates tissue regeneration via CXCR4. Journal of Experimental Medicine, 2018, 215, 303-318.	8.5	131
16	RhoA and ERK signalling regulate the expression of the myogenic transcription factor Nfix. Development (Cambridge), 2018, 145, .	2.5	13
17	Reporter-Based Isolation of Developmental Myogenic Progenitors. Frontiers in Physiology, 2018, 9, 352.	2.8	0
10	Tourseting Niju to fin museular dustranking Call Streege 2018 2, 17,10		

3.2 4

GRAZIELLA MESSINA

#	Article	IF	CITATIONS
19	Isolation and Characterization of Vessel-Associated Stem/Progenitor Cells from Skeletal Muscle. Methods in Molecular Biology, 2017, 1556, 149-177.	0.9	8
20	Silencing Nfix rescues muscular dystrophy by delaying muscle regeneration. Nature Communications, 2017, 8, 1055.	12.8	25
21	Nfix Induces a Switch in Sox6 Transcriptional Activity to Regulate MyHC-I Expression in Fetal Muscle. Cell Reports, 2016, 17, 2354-2366.	6.4	34
22	Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression. Cell Reports, 2016, 14, 2238-2249.	6.4	78
23	Reversible immortalisation, human artificial chromosomes, and induced pluripotency: new gene and cell therapy technologies for Duchenne muscular dystrophy. Lancet, The, 2016, 387, S98.	13.7	0
24	PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nature Communications, 2015, 6, 6364.	12.8	120
25	Comparative myogenesis in teleosts and mammals. Cellular and Molecular Life Sciences, 2014, 71, 3081-3099.	5.4	54
26	Dll4 and PDGF-BB Convert Committed Skeletal Myoblasts to Pericytes without Erasing Their Myogenic Memory. Developmental Cell, 2013, 24, 586-599.	7.0	52
27	Conserved and divergent functions of Nfix in skeletal muscle development during vertebrate evolution. Development (Cambridge), 2013, 140, 1528-1536.	2.5	22
28	Embryonic Stem Cell–Derived CD166 ⁺ Precursors Develop Into Fully Functional Sinoatrial-Like Cells. Circulation Research, 2013, 113, 389-398.	4.5	54
29	Cyclin D1 is a major target of miR-206 in cell differentiation and transformation. Cell Cycle, 2013, 12, 3781-3790.	2.6	58
30	Conserved and divergent functions of Nfix in skeletal muscle development during vertebrate evolution. Development (Cambridge), 2013, 140, 2443-2443.	2.5	2
31	Cornelia de Lange Syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts. Cell Death and Disease, 2013, 4, e866-e866.	6.3	47
32	Stem Cell–Mediated Transfer of a Human Artificial Chromosome Ameliorates Muscular Dystrophy. Science Translational Medicine, 2011, 3, 96ra78.	12.4	137
33	An evolutionarily acquired genotoxic response discriminates MyoD from Myf5, and differentially regulates hypaxial and epaxial myogenesis. EMBO Reports, 2011, 12, 164-171.	4.5	15
34	miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. Journal of Cell Biology, 2011, 193, 1197-1212.	5.2	77
35	Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. Journal of Clinical Investigation, 2010, 120, 11-19.	8.2	538
36	Proline Isomerase Pin1 Represses Terminal Differentiation and Myocyte Enhancer Factor 2C Function in Skeletal Muscle Cells. Journal of Biological Chemistry, 2010, 285, 34518-34527.	3.4	28

Graziella Messina

#	Article	IF	CITATIONS
37	Partial dysferlin reconstitution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine model of dysferlinopathy. Cell Death and Disease, 2010, 1, e61-e61.	6.3	53
38	Nfix Regulates Fetal-Specific Transcription in Developing Skeletal Muscle. Cell, 2010, 140, 554-566.	28.9	173
39	A highly Stable and Nonintegrated Human Artificial Chromosome (HAC) Containing the 2.4 Mb Entire Human Dystrophin Gene. Molecular Therapy, 2009, 17, 309-317.	8.2	99
40	The origin of embryonic and fetal myoblasts: a role of Pax3 and Pax7: Figure 1 Genes and Development, 2009, 23, 902-905.	5.9	56
41	Skeletal Muscle Differentiation of Embryonic Mesoangioblasts Requires Pax3 Activity. Stem Cells, 2009, 27, 157-164.	3.2	30
42	Pax3:Foxc2 Reciprocal Repression in the Somite Modulates Muscular versus Vascular Cell Fate Choice in Multipotent Progenitors. Developmental Cell, 2009, 17, 892-899.	7.0	87
43	17-P019 A Pax3/7:Foxc2 negative feedback loop in the somite modulates multipotent stem cell fates. Mechanisms of Development, 2009, 126, S276.	1.7	0
44	The homeobox gene Arx is a novel positive regulator of embryonic myogenesis. Cell Death and Differentiation, 2008, 15, 94-104.	11.2	28
45	Non Muscle Stem Cells and Muscle Regeneration. , 2008, , 65-84.		1
46	Bisperoxovanadium, a phosphoâ€ŧyrosine phosphatase inhibitor, reprograms myogenic cells to acquire a pluripotent, circulating phenotype. FASEB Journal, 2007, 21, 3573-3583.	0.5	20
47	Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 2007, 9, 255-267.	10.3	899
48	Cytotoxic necrotizing factor 1 hinders skeletal muscle differentiation in vitro by perturbing the activation/deactivation balance of Rho GTPases. Cell Death and Differentiation, 2005, 12, 78-86.	11.2	42
49	p27Kip1 Acts Downstream of N-Cadherin-mediated Cell Adhesion to Promote Myogenesis beyond Cell Cycle Regulation. Molecular Biology of the Cell, 2005, 16, 1469-1480.	2.1	50