List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1527600/publications.pdf Version: 2024-02-01

DETED H SANTSCHL

#	Article	IF	CITATIONS
1	Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 2008, 17, 372-386.	2.4	1,459
2	The oceanic gel phase: a bridge in the DOM–POM continuum. Marine Chemistry, 2004, 92, 67-85.	2.3	576
3	The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution, 2009, 157, 3034-3041.	7.5	362
4	A kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems. Geochimica Et Cosmochimica Acta, 1984, 48, 1513-1522.	3.9	356
5	Metals in aquatic systems. Environmental Science & amp; Technology, 1988, 22, 862-871.	10.0	328
6	Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in six Texas estuaries. Marine Chemistry, 1994, 45, 307-336.	2.3	303
7	An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Marine Chemistry, 2006, 100, 213-233.	2.3	245
8	Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry, 1999, 63, 185-212.	2.3	240
9	Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Marine Environmental Research, 2001, 52, 51-79.	2.5	239
10	Zinc oxide–engineered nanoparticles: Dissolution and toxicity to marine phytoplankton. Environmental Toxicology and Chemistry, 2010, 29, 2814-2822.	4.3	221
11	The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Marine Chemistry, 1994, 45, 105-119.	2.3	211
12	Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnology and Oceanography, 1995, 40, 1392-1403.	3.1	209
13	A critical evaluation of the cross-flow ultrafiltration technique for sampling colloidal organic carbon in seawater. Marine Chemistry, 1996, 55, 113-127.	2.3	182
14	lsotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments. Geochimica Et Cosmochimica Acta, 1995, 59, 625-631.	3.9	175
15	Heterogeneous processes affecting trace contaminant distribution in estuaries: The role of natural organic matter. Marine Chemistry, 1997, 58, 99-125.	2.3	170
16	Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. Limnology and Oceanography, 1998, 43, 896-908.	3.1	169
17	Importance of acid polysaccharides for ²³⁴ Th complexation to marine organic matter. Limnology and Oceanography, 2002, 47, 367-377.	3.1	166
18	Atmospheric Dispersal of129Iodine from Nuclear Fuel Reprocessing Facilities. Environmental Science & Technology, 1999, 33, 2536-2542.	10.0	161

#	Article	IF	CITATIONS
19	Intracellular Uptake: A Possible Mechanism for Silver Engineered Nanoparticle Toxicity to a Freshwater Alga Ochromonas danica. PLoS ONE, 2010, 5, e15196.	2.5	161
20	The role of particles and colloids in the transport of radionuclides in coastal environments of Texas. Marine Chemistry, 1993, 43, 95-114.	2.3	155
21	Direct and Indirect Toxic Effects of Engineered Nanoparticles on Algae: Role of Natural Organic Matter. ACS Sustainable Chemistry and Engineering, 2013, 1, 686-702.	6.7	154
22	Scavenging of thorium isotopes by colloids in seawater of the Gulf of Mexico. Geochimica Et Cosmochimica Acta, 1992, 56, 3375-3388.	3.9	150
23	Composition and cycling of colloids in marine environments. Reviews of Geophysics, 1997, 35, 17-40.	23.0	146
24	Thorium speciation in seawater. Marine Chemistry, 2006, 100, 250-268.	2.3	142
25	Re-examination of cross-flow ultrafiltration for sampling aquatic colloids: evidence from molecular probes. Marine Chemistry, 2000, 69, 75-90.	2.3	139
26	History of Trace Metal Pollution in Sabine-Neches Estuary, Beaumont, Texas. Environmental Science & Technology, 1995, 29, 1495-1503.	10.0	135
27	Colloidal and Particulate Silver in River and Estuarine Waters of Texas. Environmental Science & Technology, 1997, 31, 723-731.	10.0	135
28	Sources of iodine and iodine 129 in rivers. Water Resources Research, 2002, 38, 24-1-24-10.	4.2	133
29	Natural (210Pb, 7Be) and fallout (137Cs, 239,240Pu, 90Sr) radionuclides as geochemical tracers of sedimentation in Greifensee, Switzerland. Chemical Geology, 1987, 63, 181-196.	3.3	132
30	Isotopic and elemental characterization of colloidal organic matter from the Chesapeake Bay and Galveston Bay. Marine Chemistry, 1997, 59, 1-15.	2.3	128
31	Cycling of highâ€molecularâ€weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic (¹³ C and ¹⁴ C) signatures. Limnology and Oceanography, 1996, 41, 1242-1252.	3.1	122
32	An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Marine Chemistry, 1996, 55, 129-152.	2.3	121
33	Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Marine Chemistry, 2001, 73, 305-318.	2.3	120
34	Aggregation, Dissolution, and Stability of Quantum Dots in Marine Environments: Importance of Extracellular Polymeric Substances. Environmental Science & Technology, 2012, 46, 8764-8772.	10.0	113
35	Organic Nature of Colloidal Actinides Transported in Surface Water Environments. Environmental Science & Technology, 2002, 36, 3711-3719.	10.0	111
36	Distribution and partitioning of trace metals (Cd, Cu, Ni, Pb, Zn) in Galveston Bay waters. Marine Chemistry, 2002, 78, 29-45.	2.3	110

#	Article	IF	CITATIONS
37	Distributions of carbohydrate species in the Gulf of Mexico. Marine Chemistry, 2003, 81, 119-135.	2.3	110
38	Polymer dynamics of DOC networks and gel formation in seawater. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1486-1493.	1.4	110
39	Coupling adsorption and particle aggregation: laboratory studies of "colloidal pumping" using iron-59-labeled hematite. Environmental Science & amp; Technology, 1991, 25, 1739-1747.	10.0	107
40	234Th scavenging and its relationship to acid polysaccharide abundance in the Gulf of Mexico. Marine Chemistry, 2002, 78, 103-119.	2.3	105
41	The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnology and Oceanography Letters, 2016, 1, 3-26.	3.9	105
42	Trace metal chemistry of Galveston Bay: water, sediments and biota. Marine Environmental Research, 1993, 36, 1-37.	2.5	99
43	The distribution of biogenic thiols in surface waters of Galveston Bay. Limnology and Oceanography, 2000, 45, 1289-1297.	3.1	95
44	Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping. Geochimica Et Cosmochimica Acta, 1997, 61, 2867-2878.	3.9	93
45	Amphiphilic exopolymers from Sagittula stellata induce DOM self-assembly and formation of marine microgels. Marine Chemistry, 2008, 112, 11-19.	2.3	93
46	Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Marine Chemistry, 2011, 126, 27-36.	2.3	93
47	Control of acid polysaccharide production and234Th and POC export fluxes by marine organisms. Geophysical Research Letters, 2003, 30, .	4.0	91
48	Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. Marine Chemistry, 2001, 73, 215-231.	2.3	90
49	Sediment accumulation and radionuclide inventories (239,240Pu, 210Pb and 234Th) in the northern Gulf of Mexico, as influenced by organic matter and macrofaunal density. Marine Chemistry, 2004, 91, 1-14.	2.3	89
50	129I in Gulf of Mexico waters. Earth and Planetary Science Letters, 1995, 135, 131-138.	4.4	88
51	Collection of Lanthanides and Actinides from Natural Waters with Conventional and Nanoporous Sorbents. Environmental Science & amp; Technology, 2012, 46, 11251-11258.	10.0	88
52	Trace metal composition of colloidal organic material in marine environments. Marine Chemistry, 2000, 70, 257-275.	2.3	86
53	lodine-129 and lodine-127 Speciation in Groundwater at the Hanford Site, U.S.: lodate Incorporation into Calcite. Environmental Science & amp; Technology, 2013, 47, 9635-9642.	10.0	86
54	Thorium isotopes as analogues for "particle-reactive―pollutants in coastal marine environments. Earth and Planetary Science Letters, 1980, 47, 327-335.	4.4	85

#	Article	IF	CITATIONS
55	Sources and transport of land-derived particulate and dissolved organic matter in the Gulf of Mexico (Texas shelf/slope): The use of ligninphenols and loliolides as biomarkers. Organic Geochemistry, 1997, 27, 65-78.	1.8	84
56	Boundary exchange and scavenging of radionuclides in continental margin waters of the Middle Atlantic Bight: implications for organic carbon fluxes. Continental Shelf Research, 1999, 19, 609-636.	1.8	81
57	Organo-Iodine Formation in Soils and Aquifer Sediments at Ambient Concentrations. Environmental Science & Technology, 2009, 43, 7258-7264.	10.0	81
58	The 129iodine bomb pulse recorded in Mississippi River Delta sediments: results from isotopes of I, Pu, Cs, Pb, and C. Geochimica Et Cosmochimica Acta, 2000, 64, 989-996.	3.9	80
59	Effects of Engineered Nanoparticles on the Assembly of Exopolymeric Substances from Phytoplankton. PLoS ONE, 2011, 6, e21865.	2.5	80
60	Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. Science of the Total Environment, 2020, 748, 141469.	8.0	80
61	Effect of Dissolved Organic Matter on the Uptake of Trace Metals by American Oysters. Environmental Science & Technology, 2001, 35, 885-893.	10.0	79
62	Distribution of dissolved and particulate230Th and232Th in seawater from the Gulf of Mexico and off Cape Hatteras as measured by SIMS. Earth and Planetary Science Letters, 1995, 133, 117-128.	4.4	77
63	Colloidal Pumping:Â Evidence for the Coagulation Process Using Natural Colloids Tagged with203Hg. Environmental Science & Technology, 1996, 30, 3335-3340.	10.0	77
64	Sequestration and Remobilization of Radioiodine (¹²⁹ 1) by Soil Organic Matter and Possible Consequences of the Remedial Action at Savannah River Site. Environmental Science & Technology, 2011, 45, 9975-9983.	10.0	74
65	Organic complexation of copper in surface waters of Galveston Bay. Limnology and Oceanography, 2001, 46, 321-330.	3.1	73
66	Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea. Marine Chemistry, 2006, 101, 104-129.	2.3	73
67	Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit. Frontiers in Microbiology, 2018, 9, 689.	3.5	72
68	129I/127I as a new environmental tracer or geochronometer for biogeochemical or hydrodynamic processes in the hydrosphere and geosphere: the central role of organo-iodine. Science of the Total Environment, 2004, 321, 257-271.	8.0	71
69	Sorption irreversibility and coagulation behavior of 234Th with marine organic matter. Marine Chemistry, 2001, 76, 27-45.	2.3	68
70	Is soil natural organic matter a sink or source for mobile radioiodine (129I) at the Savannah River Site?. Geochimica Et Cosmochimica Acta, 2011, 75, 5716-5735.	3.9	68
71	A method for rapid in situ extraction and laboratory determination of Th, Pb, and Ra isotopes from large volumes of seawater. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 849-865.	1.4	67
72	Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Marine Chemistry, 2005, 96, 293-313.	2.3	66

#	Article	IF	CITATIONS
73	Factors controlling mobility of 127I and 129I species in an acidic groundwater plume at the Savannah River Site. Science of the Total Environment, 2011, 409, 3857-3865.	8.0	66
74	Isolation and characterization of extracellular polysaccharides produced by Pseudomonas fluorescens Biovar II. Carbohydrate Polymers, 2005, 61, 141-147.	10.2	65
75	Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry. Science of the Total Environment, 2013, 449, 244-252.	8.0	65
76	Interactions of thorium isotopes with colloidal organic matter in oceanic environments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 120, 255-271.	4.7	64
77	Binding of thorium(IV) to carboxylate, phosphate and sulfate functional groups from marine exopolymeric substances (EPS). Marine Chemistry, 2006, 100, 337-353.	2.3	64
78	Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots. Aquatic Toxicology, 2013, 126, 214-223.	4.0	64
79	234 Th: 238 U disequilibria in the Gulf of Mexico: the importance of organic matter and particle concentration. Continental Shelf Research, 1996, 16, 353-380.	1.8	63
80	Can the protein/carbohydrate (P/C) ratio of exopolymeric substances (EPS) be used as a proxy for their â€~stickiness' and aggregation propensity?. Marine Chemistry, 2020, 218, 103734.	2.3	63
81	Spectrophotometric determination of total uronic acids in seawater using cation-exchange separation and pre-concentration by lyophilization. Analytica Chimica Acta, 2001, 427, 111-117.	5.4	62
82	Colloidal Cutin-Like Substances Cross-Linked to Siderophore Decomposition Products Mobilizing Plutonium from Contaminated Soils. Environmental Science & Technology, 2008, 42, 8211-8217.	10.0	62
83	Terrestrially derived dissolved organic matter in the chesapeake bay and the middle atlantic bight. Geochimica Et Cosmochimica Acta, 2000, 64, 3547-3557.	3.9	59
84	Ultrafiltration and its Applications to Sampling and Characterisation of Aquatic Colloids. , 2007, , 159-221.		59
85	Molecular environment of stable iodine and radioiodine (1291) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations. Geochimica Et Cosmochimica Acta, 2012, 97, 166-182.	3.9	59
86	Accumulation rates and sources of sediments and organic carbon on the Palos Verdes shelf based on radioisotopic tracers (137Cs, 239,240Pu, 210Pb, 234Th, 238U and 14C). Marine Chemistry, 2001, 73, 125-152.	2.3	57
87	Evaluation of a Radioiodine Plume Increasing in Concentration at the Savannah River Site. Environmental Science & Technology, 2011, 45, 489-495.	10.0	56
88	Causes of Salt Marsh Erosion in Galveston Bay, Texas. Journal of Coastal Research, 2009, 252, 265-272.	0.3	55
89	Nano-plastics induce aquatic particulate organic matter (microgels) formation. Science of the Total Environment, 2020, 706, 135681.	8.0	55
90	Bacterial Production of Organic Acids Enhances H ₂ O ₂ -Dependent lodide Oxidation. Environmental Science & Technology, 2012, 46, 4837-4844.	10.0	54

#	Article	IF	CITATIONS
91	Chemical composition and 234Th (IV) binding of extracellular polymeric substances (EPS) produced by the marine diatom Amphora sp Marine Chemistry, 2008, 112, 81-92.	2.3	53
92	Comparative evaluation of sediment trap and 234Th-derived POC fluxes from the upper oligotrophic waters of the Gulf of Mexico and the subtropical northwestern Pacific Ocean. Marine Chemistry, 2010, 121, 132-144.	2.3	51
93	Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochimica Et Cosmochimica Acta, 2013, 107, 47-64.	3.9	51
94	Sediment Transport and Hg Recovery in Lavaca Bay, as Evaluated from Radionuclide and Hg Distributions. Environmental Science & Technology, 1999, 33, 378-391.	10.0	50
95	Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer. Geochimica Et Cosmochimica Acta, 2000, 64, 651-660.	3.9	50
96	The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: Comparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas). Marine Chemistry, 2008, 112, 20-37.	2.3	50
97	Marine colloids, agents of the self-cleansing capacity of aquatic systems: Historical perspective and new discoveries. Marine Chemistry, 2018, 207, 124-135.	2.3	50
98	Seasonality in nutrient concentrations in Galveston Bay. Marine Environmental Research, 1995, 40, 337-362.	2.5	49
99	Comparative bioaccumulation studies of colloidally complexed and free-ionic heavy metals in juvenile brown shrimp Penaeus aztecus (Crustacea: Decapoda: Penaeidae). Limnology and Oceanography, 1999, 44, 403-414.	3.1	49
100	Benthic Exchange of Nutrients in Galveston Bay, Texas. Estuaries and Coasts, 2000, 23, 647.	1.7	49
101	Silver concentrations in Colorado, USA, watersheds using improved methodology. Environmental Toxicology and Chemistry, 2002, 21, 2040-2051.	4.3	49
102	Upper ocean carbon flux determined by the 234Th approach and sediment traps using size-fractionated POC and 234Th data from the Gulf of Mexico. Geochemical Journal, 2004, 38, 601-611.	1.0	49
103	The dissolved organic iodine species of the isotopic ratio of ¹²⁹ I/ ¹²⁷ I: A novel tool for tracing terrestrial organic carbon in the estuarine surface waters of Galveston Bay, Texas. Limnology and Oceanography: Methods, 2005, 3, 326-337.	2.0	49
104	Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site. Journal of Environmental Radioactivity, 2015, 139, 43-55.	1.7	48
105	Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil. Environmental Science & Technology, 2016, 50, 4169-4177.	10.0	48
106	Role of natural organic matter on iodine and 239,240Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan. Journal of Environmental Radioactivity, 2016, 153, 156-166.	1.7	46
107	Biogeochemical behavior of organic carbon in the Trinity River downstream of a large reservoir lake in Texas, USA. Science of the Total Environment, 2004, 329, 131-144.	8.0	45
108	Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean. Marine Chemistry, 2013, 157, 131-143.	2.3	44

#	Article	IF	CITATIONS
109	Plant pigments as biomarkers of high-molecular-weight dissolved organic carbon. Limnology and Oceanography, 1995, 40, 422-428.	3.1	42
110	A seasonal survey of carbohydrates and uronic acids in the Trinity River, Texas. Organic Geochemistry, 2005, 36, 463-474.	1.8	42
111	Evidence for elevated levels of iodine-129 in the Deep Western Boundary Current in the Middle Atlantic Bight. Deep-Sea Research Part I: Oceanographic Research Papers, 1996, 43, 259-265.	1.4	41
112	Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation. Applied and Environmental Microbiology, 2014, 80, 2693-2699.	3.1	41
113	Dioxin Chronology and Fluxes in Sediments of the Houston Ship Channel, Texas:Â Influences of Non-Steady-State Sediment Transport and Total Organic Carbon. Environmental Science & Technology, 2007, 41, 5291-5298.	10.0	40
114	Response of photosynthesis and the antioxidant defense system of two microalgal species (Alexandrium minutum and Dunaliella salina) to the toxicity of BDE-47. Marine Pollution Bulletin, 2017, 124, 459-469.	5.0	40
115	lodine and plutonium association with natural organic matter: A review of recent advances. Applied Geochemistry, 2017, 85, 121-127.	3.0	40
116	Thorium sorption in the marine environment: Equilibrium partitioning at the hematite/water interface, sorption/desorption kinetics and particle tracing. Aquatic Geochemistry, 1996, 1, 277-301.	1.3	39
117	Spontaneous Assembly of Exopolymers from Phytoplankton. Terrestrial, Atmospheric and Oceanic Sciences, 2009, 20, 741.	0.6	39
118	Controls of 234Th removal from the oligotrophic ocean by polyuronic acids and modification by microbial activity. Marine Chemistry, 2011, 123, 111-126.	2.3	38
119	Binding of Th, Pa, Pb, Po and Be radionuclides to marine colloidal macromolecular organic matter. Marine Chemistry, 2015, 173, 320-329.	2.3	38
120	Scavenging and fractionation of thorium vs. protactinium in the ocean, as determined from particle–water partitioning experiments with sediment trap material from the Gulf of Mexico and Sargasso Sea. Earth and Planetary Science Letters, 2009, 286, 131-138.	4.4	37
121	Iodide Accumulation by Aerobic Bacteria Isolated from Subsurface Sediments of a ¹²⁹ I-Contaminated Aquifer at the Savannah River Site, South Carolina. Applied and Environmental Microbiology, 2011, 77, 2153-2160.	3.1	37
122	234Th in different size classes of sediment trap collected particles from the Northwestern Pacific Ocean. Geochimica Et Cosmochimica Acta, 2012, 91, 60-74.	3.9	37
123	Methods for analyzing the concentration and speciation of major and trace elements in marine particles. Progress in Oceanography, 2015, 133, 32-42.	3.2	37
124	Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency. Advances in Applied Microbiology, 2017, 101, 83-136.	2.4	36
125	Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton. Nanoscale Research Letters, 2017, 12, 620.	5.7	36
126	Production and flux of carbohydrate species in the Gulf of Mexico. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	34

#	Article	IF	CITATIONS
127	Influence of organic matter on the adsorption of 210Pb, 210Po and 7Be and their fractionation on nanoparticles in seawater. Earth and Planetary Science Letters, 2015, 423, 193-201.	4.4	34
128	Light-induced aggregation of microbial exopolymeric substances. Chemosphere, 2017, 181, 675-681.	8.2	34
129	Nitrogen and carbon isotopic composition of high-molecular-weight dissolved organic matter in marine environments. Marine Ecology - Progress Series, 2003, 252, 51-60.	1.9	34
130	Evidence for Hydroxamate Siderophores and Other N-Containing Organic Compounds Controlling ^{239,240} Pu Immobilization and Remobilization in a Wetland Sediment. Environmental Science & Technology, 2015, 49, 11458-11467.	10.0	33
131	Protein: Polysaccharide ratio in exopolymeric substances controlling the surface tension of seawater in the presence or absence of surrogate Macondo oil with and without Corexit. Marine Chemistry, 2018, 206, 84-92.	2.3	33
132	Incorporation of oil into diatom aggregates. Marine Ecology - Progress Series, 2019, 612, 65-86.	1.9	33
133	Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium. Journal of Environmental Radioactivity, 2017, 171, 226-233.	1.7	31
134	Plutonium Immobilization and Remobilization by Soil Mineral and Organic Matter in the Far-Field of the Savannah River Site, U.S Environmental Science & amp; Technology, 2014, 48, 3186-3195.	10.0	30
135	Extracellular Enzyme Activity Profile in a Chemically Enhanced Water Accommodated Fraction of Surrogate Oil: Toward Understanding Microbial Activities After the Deepwater Horizon Oil Spill. Frontiers in Microbiology, 2018, 9, 798.	3.5	30
136	Optimized isolation procedure for obtaining strongly actinide binding exopolymeric substances (EPS) from two bacteria (Sagittula stellata and Pseudomonas fluorescens Biovar II). Bioresource Technology, 2009, 100, 6010-6021.	9.6	29
137	Identifying oil/marine snow associations in mesocosm simulations of the Deepwater Horizon oil spill event using solid-state 13C NMR spectroscopy. Marine Pollution Bulletin, 2018, 126, 159-165.	5.0	29
138	Radioiodine concentrated in a wetland. Journal of Environmental Radioactivity, 2014, 131, 57-61.	1.7	28
139	Response of natural phytoplankton communities exposed to crude oil and chemical dispersants during a mesocosm experiment. Aquatic Toxicology, 2019, 206, 43-53.	4.0	28
140	Application of cross-flow ultrafiltration for isolating exopolymeric substances from a marine diatom (Amphorasp.). Limnology and Oceanography: Methods, 2009, 7, 419-429.	2.0	27
141	The effects of sunlight on the composition of exopolymeric substances and subsequent aggregate formation during oil spills. Marine Chemistry, 2018, 203, 49-54.	2.3	27
142	Delivery of Trace Metals (Al, Fe, Mn, V, Co, Ni, Cu, Cd, Ag, Pb) from the Trinity River Watershed Towards the Ocean. Estuaries and Coasts, 2009, 32, 158-172.	2.2	26
143	Important role of biomolecules from diatoms in the scavenging of particleâ€reactive radionuclides of thorium, protactinium, lead, polonium, and beryllium in the ocean: A case study with <i>Phaeodactylum tricornutum</i> . Limnology and Oceanography, 2014, 59, 1256-1266.	3.1	26
144	The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Marine Chemistry, 2018, 206, 52-61.	2.3	26

#	Article	IF	CITATIONS
145	Protein to carbohydrate (P/C) ratio changes in microbial extracellular polymeric substances induced by oil and Corexit. Marine Chemistry, 2020, 223, 103789.	2.3	26
146	Polycyclic aromatic hydrocarbons (PAHs) and putative PAH-degrading bacteria in Galveston Bay, TX (USA), following Hurricane Harvey (2017). Environmental Science and Pollution Research, 2020, 27, 34987-34999.	5.3	26
147	Sunlight induced aggregation of dissolved organic matter: Role of proteins in linking organic carbon and nitrogen cycling in seawater. Science of the Total Environment, 2019, 654, 872-877.	8.0	25
148	Decreased sedimentation efficiency of petro- and non-petro-carbon caused by a dispersant for Macondo surrogate oil in a mesocosm simulating a coastal microbial community. Marine Chemistry, 2018, 206, 34-43.	2.3	24
149	Molecular weight and chemical reactivity of dissolved trace metals (Cd, Cu, Ni) in surface waters from the Mississippi River to Gulf of Mexico. Estuarine, Coastal and Shelf Science, 2011, 92, 649-658.	2.1	23
150	Comparison of microgels, extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP) determined in seawater with and without oil. Marine Chemistry, 2019, 215, 103667.	2.3	23
151	Geochemical controls of iodine uptake and transport in Savannah River Site subsurface sediments. Applied Geochemistry, 2014, 45, 105-113.	3.0	22
152	Impact of exposure of crude oil and dispersant (Corexit) on aggregation of extracellular polymeric substances. Science of the Total Environment, 2019, 657, 1535-1542.	8.0	22
153	Near-conservative behavior of 129I in the orange county aquifer system, California. Applied Geochemistry, 2005, 20, 1461-1472.	3.0	21
154	Rapid Degradation of Oil in Mesocosm Simulations of Marine Oil Snow Events. Environmental Science & Technology, 2019, 53, 3441-3450.	10.0	21
155	From Nano-Gels to Marine Snow: A Synthesis of Gel Formation Processes and Modeling Efforts Involved with Particle Flux in the Ocean. Gels, 2021, 7, 114.	4.5	21
156	Relationships Between Geochemical Parameters (pH, DOC, SPM, EDTA Concentrations) and Trace Metal (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) Concentrations in River Waters of Texas (USA). Aquatic Geochemistry, 2013, 19, 173-193.	1.3	20
157	Colloid-Trace Element Interactions in Aquatic Systems. , 2007, , 95-157.		19
158	Estimates of recovery of the Penobscot River and estuarine system from mercury contamination in the 1960's. Science of the Total Environment, 2017, 596-597, 351-359.	8.0	19
159	Composition and transport of settling particles in Lake Zurich: relative importance of vertical and lateral pathways. Aquatic Sciences, 2001, 63, 123-149.	1.5	17
160	Impacts of Dredging Activities on the Accumulation of Dioxins in Surface Sediments of the Houston Ship Channel, Texas. Journal of Coastal Research, 2010, 264, 743-752.	0.3	17
161	Temporal Variation of Iodine Concentration and Speciation (¹²⁷ I and ¹²⁹ I) in Wetland Groundwater from the Savannah River Site, USA. Environmental Science & Technology, 2014, 48, 11218-11226.	10.0	17
162	Widespread Distribution of Dehalococcoides mccartyi in the Houston Ship Channel and Galveston Bay, Texas, Sediments and the Potential for Reductive Dechlorination of PCDD/F in an Estuarine Environment. Marine Biotechnology, 2016, 18, 630-644.	2.4	17

#	Article	IF	CITATIONS
163	Centennial record of anthropogenic impacts in Galveston Bay: Evidence from trace metals (Hg, Pb, Ni,) Tj ETQq1	1 9.78431	.4 <mark>[g</mark> BT /Over
164	Modeling Variability in210Pb and Sediment Fluxes Near the Whites Point Outfalls, Palos Verdes Shelf, California. Environmental Science & Technology, 1999, 33, 3077-3085.	10.0	16
165	Characterization of organic-rich colloids from surface and ground waters at the actinide-contaminated Rocky Flats Environmental Technology Site (RFETS), Colorado, USA. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 244, 105-111.	4.7	16
166	Pu(V) reduction and enhancement of particle-water partitioning by exopolymeric substances. Radiochimica Acta, 2008, 96, 739-745.	1.2	16
167	Mercury inputs and redistribution in the Penobscot River and estuary, Maine. Science of the Total Environment, 2018, 622-623, 172-183.	8.0	16
168	Stickiness of extracellular polymeric substances on different surfaces via magnetic tweezers. Science of the Total Environment, 2021, 757, 143766.	8.0	16
169	Protective Role of Alginic Acid Against Metal Uptake by American Oyster (Crassostrea virginica). Environmental Chemistry, 2006, 3, 172.	1.5	15
170	The interplay of extracellular polymeric substances and oil/Corexit to affect the petroleum incorporation into sinking marine oil snow in four mesocosms. Science of the Total Environment, 2019, 693, 133626.	8.0	15
171	lodine speciation in a silver-amended cementitious system. Environment International, 2019, 126, 576-584.	10.0	15
172	The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast. Estuarine, Coastal and Shelf Science, 2008, 76, 69-84.	2.1	14
173	Speciation of iodine isotopes inside and outside of a contaminant plume at the Savannah River Site. Science of the Total Environment, 2014, 497-498, 671-678.	8.0	14
174	Increased zooplankton PAH concentrations across hydrographic fronts in the East China Sea. Marine Pollution Bulletin, 2014, 83, 248-257.	5.0	14
175	Nagasaki sediments reveal that long-term fate of plutonium is controlled by select organic matter moieties. Science of the Total Environment, 2019, 678, 409-418.	8.0	14
176	Sources of alluvium in a coastal plain stream based on radionuclide signatures from the238U and232Th decay series. Water Resources Research, 2002, 38, 24-1-24-11.	4.2	13
177	Plutonium Partitioning Behavior to Humic Acids from Widely Varying Soils Is Related to Carboxyl-Containing Organic Compounds. Environmental Science & Technology, 2017, 51, 11742-11751.	10.0	13
178	Limited mobility of dioxins near San Jacinto super fund site (waste pit) in the Houston Ship Channel, Texas due to strong sediment sorption. Environmental Pollution, 2018, 238, 988-998.	7.5	13
179	Iodine speciation in cementitious environments. Applied Geochemistry, 2019, 103, 15-22.	3.0	13
180	Marine Snow Aggregates are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study. Journal of Marine Science and Engineering, 2020, 8, 781.	2.6	13

#	Article	IF	CITATIONS
181	Exoenzymes as a Signature of Microbial Response to Marine Environmental Conditions. MSystems, 2020, 5, .	3.8	13
182	Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants. Gels, 2021, 7, 83.	4.5	13
183	Carbon isotopes and iodine concentrations in a Mississippi River delta core recording land use, sediment transport, and dam building in the river's drainage basin. Marine Environmental Research, 2007, 63, 278-290.	2.5	12
184	Molecular level characterization of diatomâ€associated biopolymers that bind ²³⁴ Th, ²³³ Pa, ²¹⁰ Pb, and ⁷ Be in seawater: A case study with <i>Phaeodactylum tricornutum</i> . Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1858-1869.	3.0	11
185	Diatom aggregation when exposed to crude oil and chemical dispersant: Potential impacts of ocean acidification. PLoS ONE, 2020, 15, e0235473.	2.5	10
186	Radionuclide uptake by colloidal and particulate humic acids obtained from 14 soils collected worldwide. Scientific Reports, 2018, 8, 4795.	3.3	9
187	Polycyclic aromatic hydrocarbons (PAHs) cycling and fates in Galveston Bay, Texas, USA. PLoS ONE, 2020, 15, e0243734.	2.5	9
188	Sediment accumulation and mixing in the Penobscot River and estuary, Maine. Science of the Total Environment, 2018, 635, 228-239.	8.0	8
189	Molecular Interaction of Aqueous Iodine Species with Humic Acid Studied by I and C K-Edge X-ray Absorption Spectroscopy. Environmental Science & Technology, 2019, 53, 12416-12424.	10.0	8
190	Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform Infrared spectroscopy. Marine Pollution Bulletin, 2018, 130, 170-178.	5.0	7
191	Biogenic Manganese Oxides Facilitate Iodide Oxidation at pH ≤5. Geomicrobiology Journal, 2018, 35, 167-173.	2.0	7
192	Photo-oxidation of proteins facilitates the preservation of high molecular weight dissolved organic nitrogen in the ocean. Marine Chemistry, 2021, 229, 103907.	2.3	7
193	Sorption of selected radionuclides on different MnO2 phases. Environmental Chemistry, 2017, 14, 207.	1.5	6
194	The Interplay of Phototrophic and Heterotrophic Microbes Under Oil Exposure: A Microcosm Study. Frontiers in Microbiology, 2021, 12, 675328.	3.5	6
195	Comment on "How accurate are ²³⁴ Th measurements in seawater based on the MnO ₂ â€impregnated cartridge technique?―by Pinghe Cai et al Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	5
196	Molecular Level Characterization of Diatom and Coccolithophore-Associated Biopolymers That Are Binding 210Pb and 210Po in Seawater. Frontiers in Marine Science, 2021, 8, .	2.5	5
197	Importance of coccolithophoreâ€associated organic biopolymers for fractionating particleâ€reactive radionuclides (²³⁴ Th, ²³³ Pa, ²¹⁰ Pb, ²¹⁰ Po, and) Tj ETQq1	1 0. ø8431	.4 s gBT /Over
198	Actinide Migration from Contaminated Soil to Surface Water at the Rocky Flats Environmental Technology Site. Journal of Nuclear Science and Technology, 2002, 39, 485-488.	1.3	4

#	Article	IF	CITATIONS
199	Response to Comment on "lodine-129 and Iodine-127 Speciation in Groundwater at Hanford Site, U.S.: Iodate Incorporation into Calcite― Environmental Science & Technology, 2013, 47, 13205-13206.	10.0	3
200	Incorporation of Hydroxamate Siderophore and Associated Fe Into Marine Particles in Natural Seawater. Frontiers in Marine Science, 2020, 7, .	2.5	2
201	Large seasonal fluctuations of groundwater radioiodine speciation and concentrations in a riparian wetland in South Carolina. Science of the Total Environment, 2022, 816, 151548.	8.0	2
202	Aggregation and Degradation of Dispersants and Oil by Microbial Exopolymers (ADDOMEx): Toward a Synthesis of Processes and Pathways of Marine Oil Snow Formation in Determining the Fate of Hydrocarbons. Frontiers in Marine Science, 2021, 8, .	2.5	1
203	Clean Sampling and Analysis of River and Estuarine Waters for Trace Metal Studies. Journal of Visualized Experiments, 2016, , .	0.3	0