Enrico Schulz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1527407/publications.pdf Version: 2024-02-01

ENDICO SCHULZ

#	Article	IF	CITATIONS
1	Individually unique dynamics of cortical connectivity reflect the ongoing intensity of chronic pain. Pain, 2022, 163, 1987-1998.	4.2	10
2	Intrinsic network activity reflects the fluctuating experience of tonic pain. Cerebral Cortex, 2022, 32, 4098-4109.	2.9	0
3	Intrinsic network connectivity reflects the cyclic trajectory of migraine attacks. Neurobiology of Pain (Cambridge, Mass), 2022, 11, 100085.	2.5	7
4	Patients with chronic pain exhibit individually unique cortical signatures of pain encoding. Human Brain Mapping, 2022, 43, 1676-1693.	3.6	27
5	Migraine attacks as a result of hypothalamic loss of control. NeuroImage: Clinical, 2021, 32, 102784.	2.7	26
6	A novel tool for the removal of muscle artefacts from EEG: Improving data quality in the gamma frequency range. Journal of Neuroscience Methods, 2021, 358, 109217.	2.5	6
7	Intrinsic network activity reflects the ongoing experience of chronic pain. Scientific Reports, 2021, 11, 21870.	3.3	5
8	Automatised application of pinprick-evoked potentials improves investigation of central sensitisation in humans. Clinical Neurophysiology, 2020, 131, 2482-2483.	1.5	0
9	Ultra-high-field imaging reveals increased whole brain connectivity underpins cognitive strategies that attenuate pain. ELife, 2020, 9, .	6.0	14
10	Strategy-dependent modulation of cortical pain circuits for the attenuation of pain. Cortex, 2019, 113, 255-266.	2.4	26
11	Brain structural alterations associated with dysfunctional cognitive control of pain in patients with low back pain. European Journal of Pain, 2018, 22, 745-755.	2.8	13
12	Frontoâ€Insular Connectivity during Pain Distraction Is Impaired in Patients with Somatoform Pain. Journal of Neuroimaging, 2018, 28, 621-628.	2.0	9
13	Neuronal Oscillations in Various Frequency Bands Differ between Pain and Touch. Frontiers in Human Neuroscience, 2016, 10, 182.	2.0	48
14	Differential neurophysiological correlates of bottom-up and top-down modulations of pain. Pain, 2015, 156, 289-296.	4.2	52
15	Prefrontal Gamma Oscillations Encode Tonic Pain in Humans. Cerebral Cortex, 2015, 25, 4407-4414.	2.9	189
16	Dopamine Precursor Depletion Influences Pain Affect Rather than Pain Sensation. PLoS ONE, 2014, 9, e96167.	2.5	36
17	Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 2014, 22, 675-680.	2.8	59
18	Cognitive mechanisms underlying reading and spelling development in five European orthographies. Learning and Instruction, 2014, 29, 65-77.	3.2	293

ENRICO SCHULZ

#	Article	IF	CITATIONS
19	Pain sensitisers exhibit grey matter changes after repetitive pain exposure: A longitudinal voxel-based morphometry study. Pain, 2013, 154, 1732-1737.	4.2	37
20	Predictors of developmental dyslexia in European orthographies with varying complexity. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2013, 54, 686-694.	5.2	307
21	Neuronal correlates of impaired habituation in response to repeated trigemino-nociceptive but not to olfactory input in migraineurs: An fMRI study. Cephalalgia, 2013, 33, 256-265.	3.9	67
22	Simultaneous Electroencephalographic and Functional Magnetic Resonance Imaging Indicate Impaired Cortical Top–Down Processing in Association with Anesthetic-induced Unconsciousness. Anesthesiology, 2013, 119, 1031-1042.	2.5	153
23	Decoding an Individual's Sensitivity to Pain from the Multivariate Analysis of EEG Data. Cerebral Cortex, 2012, 22, 1118-1123.	2.9	151
24	Behavioral and Neuronal Investigations of Hypervigilance in Patients with Fibromyalgia Syndrome. PLoS ONE, 2012, 7, e35068.	2.5	34
25	Gamma oscillations are involved in the sensorimotor transformation of pain. Journal of Neurophysiology, 2012, 108, 1025-1031.	1.8	44
26	The left occipitotemporal system in reading: Disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. NeuroImage, 2011, 54, 2426-2436.	4.2	221
27	The development of print tuning in children with dyslexia: Evidence from longitudinal ERP data supported by fMRI. NeuroImage, 2011, 57, 714-722.	4.2	113
28	Neurophysiological Coding of Traits and States in the Perception of Pain. Cerebral Cortex, 2011, 21, 2408-2414.	2.9	88
29	Gamma oscillations as a neuronal correlate of the attentional effects of pain. Pain, 2010, 150, 302-308.	4.2	64
30	Reading for meaning in dyslexic and young children: Distinct neural pathways but common endpoints. Neuropsychologia, 2009, 47, 2544-2557.	1.6	47
31	Neurophysiology in Preschool Improves Behavioral Prediction of Reading Ability Throughout Primary School. Biological Psychiatry, 2009, 66, 341-348.	1.3	108
32	Children with dyslexia lack multiple specializations along the visual word-form (VWF) system. NeuroImage, 2009, 47, 1940-1949.	4.2	201
33	Impaired semantic processing during sentence reading in children with dyslexia: Combined fMRI and ERP evidence. NeuroImage, 2008, 41, 153-168.	4.2	104