Kliment I Kugel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1527285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Jahn-Teller effect and magnetism: transition metal compounds. Uspekhi Fizicheskikh Nauk, 1982, 25, 231-256.	0.3	1,072
2	Orbital and magnetic structure of two-dimensional ferromagnets with Jahn-Teller ions. Solid State Communications, 1973, 13, 763-766.	1.9	216
3	A Stable "Flat″ Form of Two-Dimensional Crystals: Could Graphene, Silicene, Germanene Be Minigap Semiconductors?. Nano Letters, 2012, 12, 1045-1052.	9.1	172
4	Inhomogeneous charge distributions and phase separation in manganites. Physics-Uspekhi, 2001, 44, 553-570.	2.2	152
5	Metal–insulator transition induced by oxygen isotope exchange in the magnetoresistive perovskite manganites. Nature, 1998, 391, 159-161.	27.8	144
6	Low-temperature transition to a metallic state in(La0.5Pr0.5)0.7Ca0.3MnO3films. Physical Review B, 1999, 59, 6994-7000.	3.2	96
7	Elastic interactions and superstructures in manganites and other Jahn-Teller systems. Physical Review B, 2003, 67, .	3.2	89
8	Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Physical Review B, 2008, 78, .	3.2	82
9	Why stripes? Spontaneous formation of inhomogeneous structures due to elastic interactions. Europhysics Letters, 2001, 55, 208-213.	2.0	67
10	Phase Separation in Jahn-Teller Systems with Localized and Itinerant Electrons. Physical Review Letters, 2005, 95, 267210.	7.8	60
11	Resistivity and1/fnoise in nonmetallic phase-separated manganites. Physical Review B, 2001, 63, .	3.2	59
12	Spin-orbital interaction for face-sharing octahedra: Realization of a highly symmetric SU(4) model. Physical Review B, 2015, 91, .	3.2	55
13	Metal–insulator transition induced by 16O–18O oxygen isotope exchange in colossal negative magnetoresistance manganites. Journal of Applied Physics, 1998, 83, 7369-7371.	2.5	51
14	Strongly anisotropic Dirac quasiparticles in irradiated graphene. Physical Review B, 2013, 88, .	3.2	50
15	Elementary excitations in the coupled spin-orbital model. Physical Review B, 1998, 58, 10276-10282.	3.2	45
16	Role of local geometry in the spin and orbital structure of transition metal compounds. Journal of Experimental and Theoretical Physics, 2016, 122, 484-498.	0.9	45
17	Intrinsic arrested nanoscale phase separation near a topological Lifshitz transition in strongly correlated two-band metals. Superconductor Science and Technology, 2015, 28, 024005.	3.5	44
18	A two-band model for the phase separation induced by the chemical mismatch pressure in different cuprate superconductors. Superconductor Science and Technology, 2009, 22, 014007.	3.5	41

#	Article	IF	CITATIONS
19	Phase separation in systems with charge ordering. Journal of Experimental and Theoretical Physics, 2001, 93, 415-423.	0.9	38
20	Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution. Physical Review B, 2003, 67, .	3.2	36
21	Partial16O→18Oisotope substitution and phase separation in(La0.25Pr0.75)0.7Ca0.3MnO3manganite. Physical Review B, 2000, 62, R6081-R6084.	3.2	34
22	Phase separation in doped systems with spin-state transitions. Physical Review B, 2009, 80, .	3.2	34
23	Nanoscale phase separation in manganites. Journal of Physics A, 2003, 36, 9155-9163.	1.6	33
24	Approximate Ginzburg-Landau solution for the regular flux-line lattice: Circular cell method. Physical Review B, 2001, 64, .	3.2	29
25	Berry phase mechanism of the anomalous Hall effect in a disordered two-dimensional magnetic semiconductor structure. Scientific Reports, 2015, 5, 17158.	3.3	29
26	Phase separation in a two-band model for strongly correlated electrons. Physical Review B, 2007, 76, .	3.2	28
27	Electronic phase separation in iron pnictides. Physical Review B, 2013, 88, .	3.2	27
28	Spin-Valley Half-Metal as a Prospective Material for Spin Valleytronics. Physical Review Letters, 2017, 119, 107601.	7.8	27
29	Phase separation in La-Pr manganites and its evolution in a magnetic field. JETP Letters, 2000, 71, 106-110.	1.4	26
30	Phase separation and isotope effect in the ferromagnetic insulating state of thePr1â^xCaxMnO3system(0.2 <x<0.33). .<="" 2003,="" 68,="" b,="" physical="" review="" td=""><td>3.2</td><td>25</td></x<0.33).>	3.2	25
31	Doped orbitally ordered systems: Another case of phase separation. Physical Review B, 2008, 78, .	3.2	25
32	Observation of subkelvin superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cd</mml:mi><mml thin films. Physical Review B, 2019, 99, .</mml </mml:msub></mml:mrow></mml:math 	:mn 33 <td>ml:മാരാ < /mm</td>	ml:മാരാ < /mm
33	Characteristics of the phase-separated state in manganites: Relationship with transport and magnetic properties. Journal of Experimental and Theoretical Physics, 2004, 98, 572-581.	0.9	22
34	Charge inhomogeneities and transport in semiconductor heterostructures with a Mn <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>ì</mml:mi>-layer. Physical Review B, 2011, 84, .</mml:math 	3.2	22
35	Tunneling magnetoresistance of phase-separated manganites. Journal of Experimental and Theoretical Physics, 2002, 95, 753-761.	0.9	20
36	Jahn-Teller distortions and phase separation in doped manganites. Physical Review B, 2006, 74, .	3.2	20

#	Article	IF	CITATIONS
37	Commensurability oscillations and smectic vortex phase transition inYBa2Cu3Oysingle crystals. Physical Review B, 1999, 59, 11213-11216.	3.2	19
38	The effect of oxygen isotope substitution on magnetic properties of (La1-yPry)0.7Ca0.3MnO3manganites. Journal of Physics Condensed Matter, 1999, 11, 5865-5873.	1.8	19
39	Anomalous multi-order Raman scattering in LaMnO ₃ : a signature of quantum lattice effects in a Jahn–Teller crystal. Journal of Physics Condensed Matter, 2013, 25, 155602.	1.8	16
40	Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study. Scientific Reports, 2012, 2, 890.	3.3	15
41	Floquet spectrum and driven conductance in Dirac materials: Effects of Landau-Zener-Stückelberg-Majorana interferometry. Physical Review B, 2016, 94, .	3.2	15
42	Inhomogeneous electron states in the systems with imperfect nesting. JETP Letters, 2017, 105, 806-817.	1.4	15
43	Phase diagram and isotope effect in(Pr1â^'yEuy)0.7Ca0.3CoO3cobaltites exhibiting spin-state transitions. Physical Review B, 2010, 81, .	3.2	14
44	Magnetoresistance and magnetic susceptibility of phase-separated LaÂPrÂCa manganites. Journal of Physics Condensed Matter, 2003, 15, 259-266.	1.8	13
45	Relationship between orbital structure and lattice distortions in Jahn-Teller systems. Physical Review B, 2011, 83, .	3.2	13
46	Spin-valley half-metal in systems with Fermi surface nesting. Physical Review B, 2018, 98, .	3.2	13
47	Magnetization of type-ii superconductors in the range of fields H c 1 â‰神 â‰神 c 2Variational Method. Journal of Experimental and Theoretical Physics, 2000, 91, 588-596.	0.9	12
48	Magnetic polarons in a doped one-dimensional antiferromagnetic chain. Physical Review B, 2004, 69, .	3.2	12
49	Small-scale phase separation in doped anisotropic antiferromagnets. Journal of Physics Condensed Matter, 2006, 18, 10905-10914.	1.8	12
50	Out-of-Plane and In-Plane Magnetization Behavior of Dipolar Interacting FeNi Nanoislands around the Percolation Threshold. Journal of Nanomaterials, 2016, 2016, 1-9.	2.7	12
51	Bean-Livingston surface barrier and magnetic properties of granular superconductors. Physica C: Superconductivity and Its Applications, 1992, 196, 17-26.	1.2	11
52	The effect of oxygen isotope substitution on the phase diagram of nearly half-doped R1â°'xSrxMnO3manganites (R = Sm, NdTb, NdEu). Journal of Physics Condensed Matter, 2005, 17, 1975-1984.	1.8	11
53	Effects of anisotropy and disorder on the conductivity of Weyl semimetals. Physical Review B, 2015, 92, .	3.2	11
54	Magnetic field effects in electron systems with imperfect nesting. Physical Review B, 2017, 95, .	3.2	11

#	Article	IF	CITATIONS
55	Surface barrier and magnetic hysteresis of ac permeability in YBaCuO single crystal. Physica C: Superconductivity and Its Applications, 1998, 300, 270-280.	1.2	10
56	Formation of long-range spin distortions by a bound magnetic polaron. Physical Review B, 2006, 74, .	3.2	10
57	Two-dimensional Ising model with competing interactions and its application to clusters and arrays of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>ï€</mml:mi></mml:math> -rings and adiabatic quantum computing. Physical Review B. 2007. 76	3.2	10
58	Magnetic and magnetotransport properties of Bi2Se3 thin films doped by Eu. Journal of Magnetism and Magnetic Materials, 2018, 459, 331-334.	2.3	10
59	Effect of disorder on the transverse magnetoresistance of Weyl semimetals. Physical Review B, 2020, 102, .	3.2	10
60	Phase separation induced by oxygen isotope substitution in manganites of the Sm1â^'x SrxMnO3 system. Physics of the Solid State, 2004, 46, 1884-1890.	0.6	9
61	Two-dimensional Ising model with competing interactions: Phase diagram and low-temperature remanent disorder. Physical Review B, 2009, 79, .	3.2	9
62	Noise studies of magnetization dynamics in dilute magnetic semiconductor heterostructures. Physical Review B, 2012, 85, .	3.2	9
63	Fishtail or peak effect due to proximity in superconductor with normal inclusions. Physica C: Superconductivity and Its Applications, 1994, 228, 373-378.	1.2	8
64	Pinning by twin boundaries and peak effect in YBaCuO high-T c superconductors. Journal of Experimental and Theoretical Physics, 1997, 84, 1177-1185.	0.9	8
65	(La1â^'Pr)0.7Ca0.3MnO3 colossal magnetoresistive thin films on yttria stabilized zirconia. Solid State Communications, 2000, 114, 407-412.	1.9	8
66	Tunneling magnetoresistance of phase-separated manganites. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 296-299.	2.3	8
67	Small-scale phase separation and electron transport in manganites. Physics-Uspekhi, 2003, 46, 851-856.	2.2	8
68	Optical evidence of quantum rotor orbital excitations in orthorhombic manganites. Journal of Experimental and Theoretical Physics, 2016, 122, 890-901.	0.9	8
69	Interplay of the Jahn-Teller effect and spin-orbit coupling: The case of trigonal vibrations. Physical Review B, 2022, 105, .	3.2	8
70	Degenerate hubbard model in a magnetic field. Application to Jahnâ€Teller systems. Physica Status Solidi (B): Basic Research, 1977, 79, 441-450.	1.5	7
71	Tunnelling magnetoresistance and 1/fnoise in phase-separated manganites. Journal of Physics Condensed Matter, 2003, 15, 1705-1717.	1.8	7
72	Mechanism for phase separation in cuprates and related multiband systems. Physical Review B, 2008, 77,	3.2	7

#	Article	IF	CITATIONS
73	Inhomogeneous States in Strongly Correlated Electron Systems with Orbital Degrees of Freedom. Journal of Superconductivity and Novel Magnetism, 2009, 22, 147-153.	1.8	7
74	Resonant indirect exchange via spatially separated two-dimensional channel. Applied Physics Letters, 2015, 106, 252402.	3.3	7
75	Magnetic phase diagram and quantum phase transitions in a two-species boson model. Physical Review B, 2017, 96, .	3.2	7
76	Quantum phase transitions and the degree of nonidentity in the system with two different species of vector bosons. New Journal of Physics, 2018, 20, 063039.	2.9	7
77	Coexistence of Spin Density Wave and Metallic Phases Under Pressure. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2405-2413.	1.8	7
78	Effect of oxygen isotope substitution on charge ordering and magnetic and transport properties inPr0.5Ca0.5MnO3doped by chromium and ruthenium. Physical Review B, 2008, 78, .	3.2	6
79	Collective Volume Plasmons in Manganites with Nanoscale Phase Separation: Simulation of the Measured Infrared Spectra of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>La</mml:mi><mml:mn>0.7</mml:mn></mml:msub><mml:msub><mml:msub><mml:msub><mml:mi>La</mml:mi>0.7</mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub< td=""><td>mi>⁷Ca<td>ıml:mi><mml< td=""></mml<></td></td></mml:msub<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:math>	mi> ⁷ Ca <td>ıml:mi><mml< td=""></mml<></td>	ıml:mi> <mml< td=""></mml<>
80	Elementary excitations in the symmetric spin-orbital model. JETP Letters, 2014, 100, 187-191.	1.4	6
81	Localization effects in the disordered Ta interlayer of multilayer Ta–FeNi films: Evidence from dc transport and spectroscopic ellipsometry study. Applied Physics Letters, 2017, 111, .	3.3	6
82	Collective magnetic response of inhomogeneous nanoisland FeNi films around the percolation transition. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	6
83	Efficient green emission from edge states in graphene perforated by nitrogen plasma treatment. 2D Materials, 2019, 6, 045021.	4.4	6
84	Commensurability effects in superconductors with bulk and intrinsic pinning. Physica C: Superconductivity and Its Applications, 2000, 334, 203-214.	1.2	5
85	The effect partial isotope substitution 16O–18O on physical properties of La–Pr manganites. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 640-644.	2.3	5
86	Pr1â^'xCaxMnO3 system in the crossover region between different kinds of magnetic ordering. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 306-308.	2.3	5
87	High-temperature properties of the manganites: Manifestation of a paramagnetic-phase inhomogeneity?. Physics of the Solid State, 2003, 45, 508-512.	0.6	5
88	Evidence of superstructures at low temperatures in frustrated spin systems. Physica C: Superconductivity and Its Applications, 2006, 437-438, 230-233.	1.2	5
89	2D ISING MODEL WITH COMPETING INTERACTIONS AND ITS APPLICATION TO CLUSTERS AND ARRAYS OF Ï€-RINGS, GRAPHENE AND ADIABATIC QUANTUM COMPUTING. International Journal of Modern Physics B, 2009, 23, 3951-3967.	2.0	5

6

Effect of Eu doping and partial oxygen isotope substitution on magnetic phase transitions in (Pr1 \hat{a}^{2} y) Tj ETQq0 0 $\underset{5}{0.9}$ BT /Overlock 10 T

#	Article	IF	CITATIONS
91	Thermodynamics of Symmetric Spin—Orbital Model: One- and Two-Dimensional Cases. JETP Letters, 2019, 109, 546-551.	1.4	5
92	Control of Mooij correlations at the nanoscale in the disordered metallic Ta–nanoisland FeNi multilayers. Scientific Reports, 2020, 10, 21172.	3.3	5
93	Temperature dependence of exchange integrals in magnetic insulators with Jahn-Teller ions. Solid State Communications, 1980, 35, 409-413.	1.9	4
94	Critical current relaxation in ceramic superconductors effect of the surface barrier. Physica C: Superconductivity and Its Applications, 1995, 251, 307-314.	1.2	4
95	Mixed state stability range in a YBaCuO single crystal. Low Temperature Physics, 1998, 24, 617-623.	0.6	4
96	Evolution with temperature of the magnetic polaron state in an antiferromagnetic chain with impurities. Physical Review B, 2005, 72, .	3.2	4
97	Effect of electron–lattice interaction on the phase separation in strongly correlated electron systems with two types of charge carriers. Journal of Physics Condensed Matter, 2010, 22, 415601.	1.8	4
98	Stable forms of two-dimensional crystals and graphene. Physica B: Condensed Matter, 2012, 407, 1964-1968.	2.7	4
99	Resistivity of the ZrC-C system: An example of percolation behaviour. Physica Status Solidi A, 1978, 48, K131-K133.	1.7	4
100	Some peculiarities of the hall constant in disordered materials: The ZrC-C system as an example. Physica Status Solidi A, 1979, 52, K81-K83.	1.7	3
101	Non-uniform magnetic flux distribution in high Tc ceramics and hysteretic behaviour of critical current. Cryogenics, 1993, 33, 281-286.	1.7	3
102	The twofold effect of twins on critical current in high-Tc superconductors. European Physical Journal D, 1996, 46, 1025-1026.	0.4	3
103	Inhomogeneous charge states and electronic transport in manganites. Low Temperature Physics, 2001, 27, 601-608.	0.6	3
104	Elastic interactions and superstructures in manganites. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 251-255.	2.3	3
105	Manifestation of quantum rotor orbital excitations in Raman spectra of Jahn-Teller crystal LaMnO ₃ . Journal of Physics: Conference Series, 2017, 833, 012005.	0.4	3
106	Phase Separation in a Spin Density Wave State of Twisted Bilayer Graphene. JETP Letters, 2020, 112, 651-656.	1.4	3
107	Bismuth layer properties in the ultrathin Bi–FeNi multilayer films probed by spectroscopic ellipsometry. Applied Physics Letters, 2021, 119, 183101.	3.3	3
108	The melting of neutron stars' crystalline cores and gamma-ray bursts. Astrophysics and Space Science, 1976, 39, 243-249.	1.4	2

#	Article	IF	CITATIONS
109	Commensurability oscillations and a new phase transition in YBa2Cu3Oy single crystals. JETP Letters, 1999, 69, 881-886.	1.4	2
110	Effects Induced by 16O–18O Oxygen Isotope Exchange in Manganite Ceramics and Films. Journal of Superconductivity and Novel Magnetism, 1999, 12, 269-272.	0.5	2
111	First integrals of Ginzburg–Landau equations and stability criteria for vortex-free state in unconventional superconductors. Physica C: Superconductivity and Its Applications, 2000, 339, 10-16.	1.2	2
112	Phase separation, charge ordering and electron transport in manganites. Physica C: Superconductivity and Its Applications, 2001, 364-365, 643-646.	1.2	2
113	The structure of magnetic polarons in doped antiferromagnetic insulators. Physica B: Condensed Matter, 2008, 403, 1353-1355.	2.7	2
114	Phase separation in strongly correlated electron systems with two types of charge carriers. Physica B: Condensed Matter, 2008, 403, 1616-1618.	2.7	2
115	Oxygen Isotope Effect in Cr- and Ru-Doped Pr _{0.5} Ca _{0.5} MnO ₃ Manganites. Solid State Phenomena, 2009, 152-153, 127-130.	0.3	2
116	Magnetism of Bi ₂ Se ₃ thin films with Eu-rich flat inclusions. Journal of Physics Condensed Matter, 2018, 30, 445801.	1.8	2
117	New Half-Metallic States in Systems with Spin and Charge Density Waves (Brief Review). JETP Letters, 2020, 112, 725-733.	1.4	2
118	Isotope effect for transport and magnetic properties of La 0.35 Pr 0.35 Ca 0.3 MnO 3 thin films. European Physical Journal B, 2001, 19, 409-415.	1.5	1
119	Inhomogeneous states and isotope substitution in manganites. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 265-267.	2.3	1
120	Phase separation and tunnelling magnetoresistance in manganites. Physica B: Condensed Matter, 2003, 329-333, 687-688.	2.7	1
121	Strong isotope effect in Sm1â^'xSrxMnO3 manganites near x=0.5. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 407-409.	2.3	1
122	Isotope effect in nearly half-doped R1â^'xSrxMnO3 manganites (R=Sm, NdTb, NdEu). Journal of Magnetism and Magnetic Materials, 2005, 290-291, 917-920.	2.3	1
123	Two types of magnetic polarons localized at impurities in an antiferromagnetic chain. Physica B: Condensed Matter, 2005, 359-361, 1418-1420.	2.7	1
124	Electronic phase separation in magnetic oxides with Jahn–Teller ions. Journal of Magnetism and Magnetic Materials, 2007, 310, 1024-1026.	2.3	1
125	Bound magnetic polarons with extended spin distortions on frustrated lattices. Journal of Physics Condensed Matter, 2008, 20, 425214.	1.8	1
126	HIGH-FREQUENCY RESPONSE AND VOLTAGE NOISE IN MAGNETIC NANOCOMPOSITES. International Journal of Modern Physics B, 2009, 23, 4216-4233.	2.0	1

#	Article	IF	CITATIONS
127	Isotope effect and characteristic features of the phase diagram for cobaltites with spin-state transitions. Journal of Experimental and Theoretical Physics, 2010, 111, 189-193.	0.9	1
128	Phase separation in strongly correlated electron systems with spin-state transitions. Journal of Physics: Conference Series, 2010, 200, 012174.	0.4	1
129	Quantum entanglement, local indicators, and the effect of external fields in the Kugel-Khomskii model. Physical Review B, 2020, 102, .	3.2	1
130	Two-Dimensional Ising Model with Competing Interactions as a Model for Interacting π-Rings. Acta Physica Polonica A, 2009, 115, 150-152.	0.5	1
131	Critical current anisotropy of high-Tc ceramics in magnetic field. Physica C: Superconductivity and Its Applications, 1994, 231, 98-102.	1.2	Ο
132	Isotopically driven transitions in LaPrCaMnO system. Physica B: Condensed Matter, 2000, 280, 323-324.	2.7	0
133	Interplay between bulk and intrinsic pinning and commensurability effects in high-Tc superconductors. Physica B: Condensed Matter, 2000, 284-288, 901-902.	2.7	Ο
134	Evolution of the magnetic phase diagram of CMR manganites after oxygen isotope substitution. Physica B: Condensed Matter, 2000, 284-288, 1434-1435.	2.7	0
135	Lattice distortion and isotope effect in thin films LaPrCaMnO manganites. AIP Conference Proceedings, 2001, , .	0.4	Ο
136	In memory of Eduard Leonovich Nagaev. Physics-Uspekhi, 2002, 45, 565-566.	2.2	0
137	Inhomogeneous ferromagnetic insulating state and isotope effect in Pr1â´'x CaxMnO3. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1802-1804.	2.3	Ο
138	Temperature behavior of bound magnetic polarons in antiferromagnetic chain. Journal of Magnetism and Magnetic Materials, 2006, 300, e151-e154.	2.3	0
139	Publisher's Note: Two-dimensional Ising model with competing interactions and its application to clusters and arrays of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ï </mml:mi></mml:math> -rings and adiabatic quantum computing [Phys. Rev. B 	3.2	Ο
140	A model for phase separation in systems with orbital ordering. Journal of Magnetism and Magnetic Materials, 2009, 321, 706-708.	2.3	0
141	Phase diagram and isotope effect in cobaltites with spin-state transitions. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 1345-1347.	0.6	0
142	Phase Diagram of Spin States and Magnetic Interactions in Isotope Substituted (Pr,Eu) _{0.7} Ca _{0.3} CoO ₃ . Solid State Phenomena, 0, 168-169, 465-468.	0.3	0
143	Paper by M Yu Kagan and K I Kugel' 'Inhomogeneous charge distributions and phase separation in manganites' [Physics–Uspekhi, June 2001, 44 (6) 553–570]. Physics-Uspekhi, 2001, 44, 1206-1206. 	2.2	0
144	HIGH-FREQUENCY RESPONSE AND VOLTAGE NOISE IN MAGNETIC NANOCOMPOSITES. , 2009, , .		0

HIGH-FREQUENCY RESPONSE AND VOLTAGE NOISE IN MAGNETIC NANOCOMPOSITES., 2009,,. 144

0

#	Article	IF	CITATIONS
145	2D ISING MODEL WITH COMPETING INTERACTIONS AND ITS APPLICATION TO CLUSTERS AND ARRAYS OF Ï€-RINGS, GRAPHENE AND ADIABATIC QUANTUM COMPUTING. , 2009, , .		0

146 The Pinning of Flux Lines by Planar and Point Defects. , 1999, , 505-508.