JÃ, rgen Wojtaszewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1525916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salbutamol Increases Leg Glucose Uptake and Metabolic Rate but not Muscle Glycogen Resynthesis in Recovery From Exercise. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1193-e1203.	3.6	3
2	Skeletal muscle adaptations to exercise are not influenced by metformin treatment in humans: secondary analyses of 2 randomized, clinical trials. Applied Physiology, Nutrition and Metabolism, 2022, 47, 309-320.	1.9	8
3	GDF15 in Appetite and Exercise: Essential Player or Coincidental Bystander?. Endocrinology, 2022, 163, .	2.8	26
4	Personalized phosphoproteomics identifies functional signaling. Nature Biotechnology, 2022, 40, 576-584.	17.5	44
5	Factors mediating exerciseâ€induced organ crosstalk. Acta Physiologica, 2022, 234, e13766.	3.8	30
6	Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nature Communications, 2022, 13, 22.	12.8	15
7	Exercise increases phosphorylation of the putative mTORC2 activity readout NDRG1 in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E63-E73.	3.5	4
8	Comment on De Wendt et al. Contraction-Mediated Glucose Transport in Skeletal Muscle Is Regulated by a Framework of AMPK, TBC1D1/4, and Rac1. Diabetes 2021;70:2796–2809. Diabetes, 2022, 71, e3-e4.	0.6	1
9	Illumination of the Endogenous Insulin-Regulated TBC1D4 Interactome in Human Skeletal Muscle. Diabetes, 2022, 71, 906-920.	0.6	3
10	Ameliorating Effects of Lifelong Physical Activity on Healthy Aging and Mitochondrial Function in Human White Adipose Tissue. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1101-1111.	3.6	11
11	ls GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake?. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E240-E243.	3.5	30
12	Small Amounts of Dietary Medium-Chain Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes, 2021, 70, 91-98.	0.6	18
13	Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nature Communications, 2021, 12, 1041.	12.8	69
14	Physical activity attenuates postprandial hyperglycaemia in homozygous TBC1D4 loss-of-function mutation carriers. Diabetologia, 2021, 64, 1795-1804.	6.3	6
15	The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metabolism, 2021, 33, 758-780.	16.2	124
16	Post-exercise recovery for the endurance athlete with type 1 diabetes: a consensus statement. Lancet Diabetes and Endocrinology,the, 2021, 9, 304-317.	11.4	18
17	Measurement of Insulin- and Contraction-Stimulated Glucose Uptake in Isolated and Incubated Mature Skeletal Muscle from Mice. Journal of Visualized Experiments, 2021, , .	0.3	7
18	AXIN1 knockout does not alter AMPK/mTORC1 regulation and glucose metabolism in mouse skeletal muscle. Journal of Physiology, 2021, 599, 3081-3100.	2.9	6

#	Article	IF	CITATIONS
19	Effect of exercise training on skeletal muscle protein expression in relation to insulin sensitivity: Perâ€protocol analysis of a randomized controlled trial (GOâ€ACTIWE). Physiological Reports, 2021, 9, e14850.	1.7	2
20	Interactions between insulin and exercise. Biochemical Journal, 2021, 478, 3827-3846.	3.7	31
21	Functional sympatholysis in mouse skeletal muscle involves sarcoplasmic reticulum swelling in arterial smooth muscle cells. Physiological Reports, 2021, 9, e15133.	1.7	1
22	Epigenome- and Transcriptome-wide Changes in Muscle Stem Cells from Low Birth Weight Men. Endocrine Research, 2020, 45, 58-71.	1.2	7
23	Growth Factor-Dependent and -Independent Activation of mTORC2. Trends in Endocrinology and Metabolism, 2020, 31, 13-24.	7.1	31
24	Insulinâ€induced membrane permeability to glucose in human muscles at rest and following exercise. Journal of Physiology, 2020, 598, 303-315.	2.9	35
25	Glucometabolic consequences of acute and prolonged inhibition of fatty acid oxidation. Journal of Lipid Research, 2020, 61, 10-19.	4.2	23
26	Mechanisms Underlying Absent Training-Induced Improvement in Insulin Action in Lean, Hyperandrogenic Women With Polycystic Ovary Syndrome. Diabetes, 2020, 69, 2267-2280.	0.6	13
27	The insulinâ€ s ensitizing effect of a single exercise bout is similar in type I and type II human muscle fibres. Journal of Physiology, 2020, 598, 5687-5699.	2.9	13
28	Thyroid hormone receptor α in skeletal muscle is essential for T3â€mediated increase in energy expenditure. FASEB Journal, 2020, 34, 15480-15491.	0.5	25
29	Insulinâ€stimulated glucose uptake partly relies on p21â€activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. Journal of Physiology, 2020, 598, 5351-5377.	2.9	15
30	Blinded by the reference protein?. Journal of Applied Physiology, 2020, 128, 1462-1463.	2.5	2
31	Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Molecular Metabolism, 2020, 40, 101028.	6.5	32
32	Colchicine treatment impairs skeletal muscle mitochondrial function and insulin sensitivity in an ageâ€specific manner. FASEB Journal, 2020, 34, 8653-8670.	0.5	13
33	Effects of High-Intensity Exercise Training on Adipose Tissue Mass, Glucose Uptake and Protein Content in Pre- and Post-menopausal Women. Frontiers in Sports and Active Living, 2020, 2, 60.	1.8	7
34	Quantification of exerciseâ€regulated ubiquitin signaling in human skeletal muscle identifies protein modification cross talk via NEDDylation. FASEB Journal, 2020, 34, 5906-5916.	0.5	23
35	Housing temperature influences exercise training adaptations in mice. Nature Communications, 2020, 11, 1560.	12.8	52
36	Pharmacological targeting of α3β4 nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia, 2020, 63, 1236-1247.	6.3	9

#	Article	IF	CITATIONS
37	Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation. Journal of Applied Physiology, 2020, 129, 297-310.	2.5	18
38	Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E311-E312.	3.5	4
39	Circulating Follistatin and Activin A and Their Regulation by Insulin in Obesity and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1343-1354.	3.6	23
40	A Single Bout of One-Legged Exercise to Local Exhaustion Decreases Insulin Action in Nonexercised Muscle Leading to Decreased Whole-Body Insulin Action. Diabetes, 2020, 69, 578-590.	0.6	21
41	Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Molecular Metabolism, 2020, 39, 100998.	6.5	29
42	The p21â€activated kinase 2 (PAK2), but not PAK1, regulates contractionâ€stimulated skeletal muscle glucose transport. Physiological Reports, 2020, 8, e14460.	1.7	9
43	Phosphoproteomics reveals conserved exerciseâ€stimulated signaling and AMPK regulation of storeâ€operated calcium entry. EMBO Journal, 2019, 38, e102578.	7.8	54
44	Rapid radiochemical filter paper assay for determination of hexokinase activity and affinity for glucose-6-phosphate. Journal of Applied Physiology, 2019, 127, 661-667.	2.5	7
45	Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nature Communications, 2019, 10, 4623.	12.8	128
46	Fatty acid type–specific regulation of SIRT1 does not affect insulin sensitivity in human skeletal muscle. FASEB Journal, 2019, 33, 5510-5519.	0.5	4
47	Current advances in our understanding of exercise as medicine in metabolic disease. Current Opinion in Physiology, 2019, 12, 12-19.	1.8	41
48	Exercise Induction of Key Transcriptional Regulators of Metabolic Adaptation in Muscle Is Preserved in Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4909-4920.	3.6	9
49	TBC1D4 Is Necessary for Enhancing Muscle Insulin Sensitivity in Response to AICAR and Contraction. Diabetes, 2019, 68, 1756-1766.	0.6	40
50	AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction. Diabetes, 2019, 68, 1427-1440.	0.6	67
51	Molecular Mechanisms in Skeletal Muscle Underlying Insulin Resistance in Women Who Are Lean With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1841-1854.	3.6	50
52	Effect of bariatric surgery on plasma GDF15 in humans. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E615-E621.	3.5	25
53	Metformin does not compromise energy status in human skeletal muscle at rest or during acute exercise: A randomised, crossover trial. Physiological Reports, 2019, 7, e14307.	1.7	18
54	Effects of oneâ€legged highâ€intensity interval training on insulinâ€mediated skeletal muscle glucose homeostasis in patients with type 2 diabetes. Acta Physiologica, 2019, 226, e13245.	3.8	40

JÃ,RGEN WOJTASZEWSKI

#	Article	IF	CITATIONS
55	<i>²</i> 2-Agonist Induces Net Leg Glucose Uptake and Free Fatty Acid Release at Rest but Not During Exercise in Young Men. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 647-657.	3.6	12
56	ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes, 2019, 68, 502-514.	0.6	20
57	Exercise training reduces the insulinâ€sensitizing effect of a single bout of exercise in human skeletal muscle. Journal of Physiology, 2019, 597, 89-103.	2.9	41
58	Identifying the Heterotrimeric Complex Stoichiometry of AMPK in Skeletal Muscle by Immunoprecipitation. Methods in Molecular Biology, 2018, 1732, 203-213.	0.9	1
59	Kinase Activity Determination of Specific AMPK Complexes/Heterotrimers in the Skeletal Muscle. Methods in Molecular Biology, 2018, 1732, 215-228.	0.9	6
60	Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism. Menopause, 2018, 25, 165-175.	2.0	21
61	Glucose metabolism and metabolic flexibility in cultured skeletal muscle cells is related to exercise status in young male subjects. Archives of Physiology and Biochemistry, 2018, 124, 119-130.	2.1	14
62	AMPK in skeletal muscle function and metabolism. FASEB Journal, 2018, 32, 1741-1777.	0.5	289
63	Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Molecular Metabolism, 2018, 16, 24-34.	6.5	58
64	Serum Is Not Necessary for Prior Pharmacological Activation of AMPK to Increase Insulin Sensitivity of Mouse Skeletal Muscle. International Journal of Molecular Sciences, 2018, 19, 1201.	4.1	5
65	Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training. Scientific Reports, 2018, 8, 10723.	3.3	44
66	Rac1 muscle knockout exacerbates the detrimental effect of highâ€fat diet on insulinâ€stimulated muscle glucose uptake independently of Akt. Journal of Physiology, 2018, 596, 2283-2299.	2.9	41
67	Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients withÂtype 2 diabetes. Physiological Reports, 2018, 6, e13723.	1.7	33
68	Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise. Diabetes, 2017, 66, 1548-1559.	0.6	48
69	Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice. Cell Metabolism, 2017, 25, 1147-1159.e10.	16.2	205
70	Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. Journal of Physiology, 2017, 595, 4845-4855.	2.9	43
71	Variable reliability of surrogate measures of insulin sensitivity after Roux-en-Y gastric bypass. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R797-R805.	1.8	15
72	Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Molecular and Cellular Endocrinology, 2017, 440, 44-56.	3.2	83

#	Article	IF	CITATIONS
73	Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects. Journal of Physiology, 2017, 595, 5557-5571.	2.9	21
74	Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes, 2017, 66, 1501-1510.	0.6	120
75	Intact initiation of autophagy and mitochondrial fission by acute exercise in skeletal muscle of patients with TypeÂ2 diabetes. Clinical Science, 2017, 131, 37-47.	4.3	34
76	Opposite Regulation of Insulin Sensitivity by Dietary Lipid Versus Carbohydrate Excess. Diabetes, 2017, 66, 2583-2595.	0.6	46
77	Exercise-stimulated glucose uptake — regulation and implications for glycaemic control. Nature Reviews Endocrinology, 2017, 13, 133-148.	9.6	312
78	Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Diabetes, 2017, 66, 598-612.	0.6	137
79	Metabolic and Transcriptional Changes in Cultured Muscle Stem Cells from Low Birth Weight Subjects. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2254-2264.	3.6	9
80	Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. Journal of Physiology, 2016, 594, 745-761.	2.9	78
81	Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E706-E719.	3.5	53
82	The Cancer Drug Dasatinib Increases PGC-1α in Adipose Tissue but Has Adverse Effects on Glucose Tolerance in Obese Mice. Endocrinology, 2016, 157, 4184-4191.	2.8	5
83	Decreased spontaneous activity in AMPK α2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism. Physiology and Behavior, 2016, 164, 300-305.	2.1	5
84	Rac1 in Muscle Is Dispensable for Improved Insulin Action After Exercise in Mice. Endocrinology, 2016, 157, 3009-3015.	2.8	13
85	mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism, 2016, 5, 646-655.	6.5	44
86	Role of AMP-Activated Protein Kinase for Regulating Post-exercise Insulin Sensitivity. Exs, 2016, 107, 81-126.	1.4	21
87	Rac1 governs exerciseâ€stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. Journal of Physiology, 2016, 594, 4997-5008.	2.9	87
88	Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cellular Signalling, 2016, 28, 663-674.	3.6	62
89	Intact Regulation of the AMPK Signaling Network in Response to Exercise and Insulin in Skeletal Muscle of Male Patients With Type 2 Diabetes: Illumination of AMPK Activation in Recovery From Exercise. Diabetes, 2016, 65, 1219-1230.	0.6	62
90	Globular adiponectin controls insulin-mediated vasoreactivity in muscle through AMPKα2. Vascular Pharmacology, 2016, 78, 24-35.	2.1	26

#	Article	IF	CITATIONS
91	α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE, 2016, 11, e0157027.	2.5	8
92	Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R510-R524.	1.8	42
93	Effects of Exercise Training on Regulation of Skeletal Muscle Glucose Metabolism in Elderly Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 866-872.	3.6	32
94	PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain. Biochemical Journal, 2015, 467, 461-472.	3.7	47
95	Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E231-E240.	3.5	29
96	Human muscle fibre typeâ€specific regulation of AMPK and downstream targets by exercise. Journal of Physiology, 2015, 593, 2053-2069.	2.9	90
97	AMPKα is critical for enhancing skeletal muscle fatty acid utilization during <i>in vivo</i> exercise in mice. FASEB Journal, 2015, 29, 1725-1738.	0.5	68
98	Prior AICAR Stimulation Increases Insulin Sensitivity in Mouse Skeletal Muscle in an AMPK-Dependent Manner. Diabetes, 2015, 64, 2042-2055.	0.6	115
99	New Nordic Diet–Induced Weight Loss Is Accompanied by Changes in Metabolism and AMPK Signaling in Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3509-3519.	3.6	39
100	Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E142-E153.	3.5	28
101	AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E900-E914.	3.5	28
102	Human Muscle Fiber Type–Specific Insulin Signaling: Impact of Obesity and Type 2 Diabetes. Diabetes, 2015, 64, 485-497.	0.6	150
103	Rac1 – a novel regulator of contractionâ€stimulated glucose uptake in skeletal muscle. Experimental Physiology, 2014, 99, 1574-1580.	2.0	58
104	Increased skeletal muscle capillarization enhances insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1105-E1116.	3.5	41
105	Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1099-E1109.	3.5	58
106	Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. Journal of Physiology, 2014, 592, 351-375.	2.9	95
107	Exercise physiology: From performance studies to muscle physiology and cardiovascular adaptations. Journal of Applied Physiology, 2014, 117, 943-944.	2.5	2
108	Early Enhancements of Hepatic and Later of Peripheral Insulin Sensitivity Combined With Increased Postprandial Insulin Secretion Contribute to Improved Glycemic Control After Roux-en-Y Gastric Bypass. Diabetes, 2014, 63, 1725-1737.	0.6	220

JÃ,RGEN WOJTASZEWSKI

#	Article	IF	CITATIONS
109	GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E355-E362.	3.5	51
110	Is contractionâ€ s timulated glucose transport feedforward regulated by Ca ²⁺ ?. Experimental Physiology, 2014, 99, 1562-1568.	2.0	11
111	Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Molecular Metabolism, 2014, 3, 742-753.	6.5	65
112	Acute mTOR inhibition induces insulin resistance and alters substrate utilization inÂvivo. Molecular Metabolism, 2014, 3, 630-641.	6.5	68
113	Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cellular Signalling, 2014, 26, 323-331.	3.6	117
114	AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB Journal, 2014, 28, 3211-3224.	0.5	182
115	Enhanced voluntary wheel running in GPRC6A receptor knockout mice. Physiology and Behavior, 2013, 118, 144-151.	2.1	16
116	Exercise, GLUT4, and Skeletal Muscle Glucose Uptake. Physiological Reviews, 2013, 93, 993-1017.	28.8	900
117	Rac1 Is a Novel Regulator of Contraction-Stimulated Glucose Uptake in Skeletal Muscle. Diabetes, 2013, 62, 1139-1151.	0.6	126
118	Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1379-E1390.	3.5	35
119	Effect of Long-Term Voluntary Exercise Wheel Running on Susceptibility to Bacterial Pulmonary Infections in a Mouse Model. PLoS ONE, 2013, 8, e82869.	2.5	7
120	Carboxylesterase 1 gene duplication and mRNA expression in adipose tissue are linked to obesity and metabolic function. FASEB Journal, 2013, 27, 701.6.	0.5	0
121	AMPK regulates contractionâ€induced glucose uptake in situ but not ex vivo. FASEB Journal, 2013, 27, 1202.12.	0.5	0
122	A novel AMPK activator, PTâ€1, increases gamma1 AMPKassociated activity, but not gamma3 AMPKâ€associated activity or glucose transport. FASEB Journal, 2013, 27, 1169.3.	0.5	0
123	Exerciseâ€induced upâ€regulation of skeletal muscle Nampt protein is independent of α2 AMPâ€activated protein kinase. FASEB Journal, 2013, 27, lb806.	0.5	0
124	Hormone Sensitive Lipase knockout mice have higher Post Exercise Insulin Sensitivity despite accumulation of diacylglycerol. FASEB Journal, 2013, 27, .	0.5	0
125	Rac1 is a novel regulator of stretchâ€induced glucose uptake in muscle. FASEB Journal, 2013, 27, 1152.7.	0.5	0
126	EMG-Normalised Kinase Activation during Exercise Is Higher in Human Gastrocnemius Compared to Soleus Muscle. PLoS ONE, 2012, 7, e31054.	2.5	22

#	Article	IF	CITATIONS
127	Lipid-Induced Insulin Resistance Affects Women Less Than Men and Is Not Accompanied by Inflammation or Impaired Proximal Insulin Signaling. Diabetes, 2011, 60, 64-73.	0.6	106
128	AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16092-16097.	7.1	357
129	Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E761-E770.	3.5	70
130	A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H450-H458.	3.2	71
131	Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle. American Journal of Physiology - Cell Physiology, 2010, 298, C377-C385.	4.6	86
132	Knockout of the predominant conventional PKC isoform, PKCα, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E340-E348.	3.5	21
133	Dysregulation of Glycogen Synthase COOH- and NH2-Terminal Phosphorylation by Insulin in Obesity and Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4547-4556.	3.6	64
134	Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E665-E675.	3.5	136
135	Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E787-E795.	3.5	18
136	Genetic and metabolic effects on skeletal muscle AMPK in young and older twins. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E956-E964.	3.5	30
137	A-769662 activates AMPK β ₁ -containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle. American Journal of Physiology - Cell Physiology, 2009, 297, C1041-C1052.	4.6	93
138	Genetic impairment of AMPKα2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E924-E934.	3.5	78
139	AMPK and the biochemistry of exercise: implications for human health and disease. Biochemical Journal, 2009, 418, 261-275.	3.7	375
140	AMPK α1 Activation Is Required for Stimulation of Glucose Uptake by Twitch Contraction, but Not by H2O2, in Mouse Skeletal Muscle. PLoS ONE, 2008, 3, e2102.	2.5	77
141	Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1308-E1317.	3.5	177
142	Effects of Endurance Exercise Training on Insulin Signaling in Human Skeletal Muscle. Diabetes, 2007, 56, 2093-2102.	0.6	162
143	Role of Akt substrate of 160ÂkDa in insulin-stimulated and contraction-stimulated glucose transport. Applied Physiology, Nutrition and Metabolism, 2007, 32, 557-566.	1.9	155
144	Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase C and interacts with insulin signalling to peptide elongation in human skeletal muscle. Journal of Physiology, 2007, 582, 1289-1301.	2.9	37

JÄ,rgen Wojtaszewski

#	Article	IF	CITATIONS
145	Effects of acute exercise and training on insulin action and sensitivity: focus on molecular mechanisms in muscle. Essays in Biochemistry, 2006, 42, 31-46.	4.7	79
146	5′AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. Journal of Physiology, 2005, 564, 563-573.	2.9	141
147	Knockout of the α2 but Not α1 5′-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle. Journal of Biological Chemistry, 2004, 279, 1070-1079.	3.4	484
148	5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E411-E417.	3.5	133
149	Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle. Journal of Physiology, 2004, 560, 909-918.	2.9	36
150	Muscle- and fibre type-specific expression of glucose transporter 4, glycogen synthase and glycogen phosphorylase proteins in human skeletal muscle. Pflugers Archiv European Journal of Physiology, 2004, 447, 452-456.	2.8	38
151	Strength Training Increases Insulin-Mediated Glucose Uptake, GLUT4 Content, and Insulin Signaling in Skeletal Muscle in Patients With Type 2 Diabetes. Diabetes, 2004, 53, 294-305.	0.6	498
152	5′-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. Journal of Applied Physiology, 2003, 94, 631-641.	2.5	129
153	Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E813-E822.	3.5	281
154	Invited Review: Effect of acute exercise on insulin signaling and action in humans. Journal of Applied Physiology, 2002, 93, 384-392.	2.5	103
155	GLUT-4 translocation in skeletal muscle studied with a cell-free assay: involvement of phospholipase D. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E608-E618.	3.5	25
156	Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. Journal of Physiology, 2001, 536, 625-633.	2.9	257
157	Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. Journal of Physiology, 2001, 531, 757-769.	2.9	113
158	Glucose, exercise and insulin: emerging concepts. Journal of Physiology, 2001, 535, 313-322.	2.9	198
159	Marathon running transiently increases câ€Jun NH 2 â€terminal kinase and p38γ activities in human skeletal muscle. Journal of Physiology, 2000, 526, 663-669.	2.9	93
160	Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. Journal of Physiology, 2000, 529, 837-847.	2.9	174
161	Isoformâ€specific and exercise intensityâ€dependent activation of 5′â€AMPâ€activated protein kinase in huma skeletal muscle. Journal of Physiology, 2000, 528, 221-226.	an 2.9	378
162	DOPA, dopamine, and DOPAC concentrations in the rat gastrointestinal tract decrease during fasting. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E815-E822.	3.5	34

JÃ,RGEN WOJTASZEWSKI

#	Article	IF	CITATIONS
163	Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E733-E741.	3.5	115
164	Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. Journal of Clinical Investigation, 1999, 104, 1257-1264.	8.2	192
165	Effects of hyperinsulinemia and hyperglycemia on insulin receptor function and glycogen synthase activation in skeletal muscle of normal man. Metabolism: Clinical and Experimental, 1991, 40, 830-835.	3.4	20
166	Diabetes, Insulin and Exercise. Sports Medicine, 1986, 3, 275-288.	6.5	15
167	The effect of training on responses of ?-endorphin and other pituitary hormones to insulin-induced hypoglycemia. European Journal of Applied Physiology and Occupational Physiology, 1985, 54, 476-479.	1.2	6
168	Skeletal muscle and hormonal adaptation to physical training in the rat: role of the sympathoâ€adrenal system. Acta Physiologica Scandinavica, 1985, 123, 127-138.	2.2	27
169	Endurance training augments the stimulatory effect of epinephrine on oxygen consumption in perfused skeletal muscle. Acta Physiologica Scandinavica, 1984, 120, 613-615.	2.2	19
170	Alpha and Beta adrenergic effects on metabolism in contracting, perfused muscle. Acta Physiologica Scandinavica, 1982, 116, 215-222.	2.2	77
171	Muscle Glucose Metabolism following Exercise in the Rat. Journal of Clinical Investigation, 1982, 69, 785-793.	8.2	435
172	INFLUENCE OF THE SYMPATHOâ€ADRENAL SYSTEM ON MUSCLE METABOLISM DURING EXERCISE. Clinical Physiology, 1981, 1, 54-59.	0.7	0