Stephen M Beverley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/152537/publications.pdf Version: 2024-02-01

		13099	23533
221	15,485	68	111
papers	citations	h-index	g-index
232	232	232	9766
232	232	232	9700
all docs	docs citations	times ranked	citing authors

STEDHEN M REVEDIEV

#	Article	IF	CITATIONS
1	The Genome of the Kinetoplastid Parasite, Leishmania major. Science, 2005, 309, 436-442.	12.6	1,237
2	Molecular evolution inDrosophila and the higher diptera. Journal of Molecular Evolution, 1984, 21, 1-13.	1.8	444
3	A Lipophosphoglycan-Independent Method for Isolation of Infective Leishmania Metacyclic Promastigotes by Density Gradient Centrifugation. Experimental Parasitology, 2001, 99, 97-103.	1.2	345
4	<i>Leishmania</i> RNA Virus Controls the Severity of Mucocutaneous Leishmaniasis. Science, 2011, 331, 775-778.	12.6	344
5	Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nature Medicine, 2004, 10, 1104-1110.	30.7	306
6	Demonstration of Genetic Exchange During Cyclical Development of <i>Leishmania</i> in the Sand Fly Vector. Science, 2009, 324, 265-268.	12.6	295
7	Unstable DNA amplifications in methotrexate resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization. Cell, 1984, 38, 431-439.	28.9	255
8	Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Molecular and Biochemical Parasitology, 2003, 128, 217-228.	1.1	247
9	The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9536-9541.	7.1	239
10	Gene replacement in parasitic protozoa. Nature, 1990, 348, 171-173.	27.8	237
11	Gene Amplification in Leishmania. Annual Review of Microbiology, 1991, 45, 417-444.	7.3	218
12	Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites. PLoS Pathogens, 2008, 4, e1000222.	4.7	213
13	Intergenic region typing (IRT): A rapid molecular approach to the characterization and evolution of Leishmania. Molecular and Biochemical Parasitology, 1995, 73, 145-155.	1.1	210
14	Retention and Loss of RNA Interference Pathways in Trypanosomatid Protozoans. PLoS Pathogens, 2010, 6, e1001161.	4.7	194
15	Characterization of the â€~unusual' mobility of large circular DNAs in pulsed field-gradient electroplioresis. Nucleic Acids Research, 1988, 16, 925-939.	14.5	183
16	The Roles of Pteridine Reductase 1 and Dihydrofolate Reductase-Thymidylate Synthase in Pteridine Metabolism in the Protozoan Parasite Leishmania major. Journal of Biological Chemistry, 1997, 272, 13883-13891.	3.4	168
17	Persistence Without Pathology in Phosphoglycan-Deficient Leishmania major. Science, 2003, 301, 1241-1243.	12.6	164
18	An in vitro system for developmental and genetic studies of Leishmania donovani phosphoglycans. Molecular and Biochemical Parasitology, 2003, 130, 31-42.	1.1	163

#	Article	IF	CITATIONS
19	Trans-kingdom Transposition of the <i>Drosophila</i> Element <i>mariner</i> Within the Protozoan <i>Leishmania</i> . Science, 1997, 276, 1716-1719.	12.6	160
20	Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends in Microbiology, 1998, 6, 35-40.	7.7	160
21	Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends in Parasitology, 2001, 17, 223-226.	3.3	151
22	Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expression and Purification, 2002, 25, 209-218.	1.3	142
23	Golgi GDP-mannose Uptake Requires Leishmania LPG2. Journal of Biological Chemistry, 1997, 272, 3799-3805.	3.4	141
24	Characterization of a Defensin from the Sand Fly Phlebotomus duboscqi Induced by Challenge with Bacteria or the Protozoan Parasite Leishmania major. Infection and Immunity, 2004, 72, 7140-7146.	2.2	137
25	A bifunctional thymidylate synthetase-dihydrofolate reductase in protozoa. Molecular and Biochemical Parasitology, 1984, 11, 257-265.	1.1	136
26	Phosphoproteome dynamics reveal heat-shock protein complexes specific to the <i>Leishmania donovani</i> infectious stage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8381-8386.	7.1	129
27	Protozomics: trypanosomatid parasite genetics comes of age. Nature Reviews Genetics, 2003, 4, 11-19.	16.3	123
28	Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Nature Structural Biology, 2001, 8, 521-525.	9.7	120
29	Vaccination with Phosphoglycan-Deficient <i>Leishmania major</i> Protects Highly Susceptible Mice from Virulent Challenge without Inducing a Strong Th1 Response. Journal of Immunology, 2004, 172, 3793-3797.	0.8	120
30	Eukaryotic UDP-Galactopyranose Mutase (GLF Gene) in Microbial and Metazoal Pathogens. Eukaryotic Cell, 2005, 4, 1147-1154.	3.4	120
31	Phospholipid and sphingolipid metabolism in Leishmania. Molecular and Biochemical Parasitology, 2010, 170, 55-64.	1.1	119
32	Regulation of Differentiation to the Infective Stage of the Protozoan Parasite Leishmania major by Tetrahydrobiopterin. Science, 2001, 292, 285-287.	12.6	118
33	Leishmania RNA virus: when the host pays the toll. Frontiers in Cellular and Infection Microbiology, 2012, 2, 99.	3.9	118
34	Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Molecular and Biochemical Parasitology, 2003, 130, 83-90.	1.1	114
35	Association of the Endobiont Double-Stranded RNA Virus LRV1 With Treatment Failure for Human Leishmaniasis Caused by <i>Leishmania braziliensis</i> in Peru and Bolivia. Journal of Infectious Diseases, 2016, 213, 112-121.	4.0	114
36	Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. Nature Cell Biology, 2001, 3, 809-815.	10.3	113

#	Article	IF	CITATIONS
37	Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Molecular and Biochemical Parasitology, 2004, 136, 71-86.	1.1	109
38	Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania. EMBO Journal, 2007, 26, 1094-1104.	7.8	108
39	Gene Expression in <i>Leishmania</i> Is Regulated Predominantly by Gene Dosage. MBio, 2017, 8, .	4.1	108
40	Sphingolipids are essential for differentiation but not growth in Leishmania. EMBO Journal, 2003, 22, 6016-6026.	7.8	107
41	cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Research, 2000, 28, 784-790.	14.5	105
42	Transfection of Leishmania and Trypanosoma brucei by Electroporation. , 1993, 21, 333-348.		102
43	Leishmania major:Promastigotes Induce Expression of a Subset of Chemokine Genes in Murine Macrophages. Experimental Parasitology, 1997, 85, 283-295.	1.2	102
44	Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Molecular Microbiology, 2005, 55, 1566-1578.	2.5	101
45	Continual renewal and replication of persistent <i>Leishmania major</i> parasites in concomitantly immune hosts. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E801-E810.	7.1	98
46	Demonstration of Circularization of Herpes Simplex Virus DNA Following infection Using Pulsed Field Gel Electrophoresis. Virology, 1993, 197, 459-462.	2.4	95
47	Discrimination Amongst Leishmania by Polymerase Chain Reaction and Hybridization with Small Subunit Ribosomal DNA Derived Oligonucleotides. Journal of Eukaryotic Microbiology, 1994, 41, 324-330.	1.7	94
48	Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4987-4992.	7.1	93
49	Folate metabolic pathways in <i>Leishmania</i> . Essays in Biochemistry, 2011, 51, 63-80.	4.7	93
50	Structural alterations of chromosome 2 in Leishmania major as evidence for diploidy, including spontaneous amplification of the mini-exon array. Molecular and Biochemical Parasitology, 1989, 34, 177-188.	1.1	92
51	Shuttle cosmid vectors for the trypanosomatid parasite Leishmania. Gene, 1993, 131, 145-150.	2.2	92
52	Ether Phospholipids and Glycosylinositolphospholipids Are Not Required for Amastigote Virulence or for Inhibition of Macrophage Activation by Leishmania major. Journal of Biological Chemistry, 2003, 278, 44708-44718.	3.4	92
53	The Mating Competence of Geographically Diverse Leishmania major Strains in Their Natural and Unnatural Sand Fly Vectors. PLoS Genetics, 2013, 9, e1003672.	3.5	92
54	Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. Molecular and Biochemical Parasitology, 2001, 113, 199-213.	1.1	91

#	Article	IF	CITATIONS
55	Leishmania Lipophosphoglycan Triggers Caspase-11 and the Non-canonical Activation of the NLRP3 Inflammasome. Cell Reports, 2019, 26, 429-437.e5.	6.4	91
56	A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes and Infection, 2007, 9, 317-324.	1.9	90
57	Leishmania amazonensis Arginase Compartmentalization in the Glycosome Is Important for Parasite Infectivity. PLoS ONE, 2012, 7, e34022.	2.5	89
58	Detection of Leishmania RNA Virus in Leishmania Parasites. PLoS Neglected Tropical Diseases, 2013, 7, e2006.	3.0	89
59	The Leishmania GDP-Mannose Transporter Is an Autonomous, Multi-specific, Hexameric Complex of LPG2 Subunits. Biochemistry, 2000, 39, 2013-2022.	2.5	86
60	Genetic nomenclature for Trypanosoma and Leishmania. Molecular and Biochemical Parasitology, 1998, 97, 221-224.	1.1	83
61	Transposon Mutagenesis of <i>Mycobacterium marinum</i> Identifies a Locus Linking Pigmentation and Intracellular Survival. Infection and Immunity, 2003, 71, 922-929.	2.2	83
62	A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10412-10417.	7.1	81
63	Developmentally regulated sphingolipid synthesis in African trypanosomes. Molecular Microbiology, 2008, 70, 281-296.	2.5	80
64	Leishmania aethiopica Field Isolates Bearing an Endosymbiontic dsRNA Virus Induce Pro-inflammatory Cytokine Response. PLoS Neglected Tropical Diseases, 2014, 8, e2836.	3.0	79
65	Leishmania major lacking arginase (ARG) are auxotrophic for polyamines but retain infectivity to susceptible BALB/c mice. Molecular and Biochemical Parasitology, 2009, 165, 48-56.	1.1	78
66	Expansion of the target of rapamycin (TOR) kinase family and function in <i>Leishmania</i> shows that <i>TOR3</i> is required for acidocalcisome biogenesis and animal infectivity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11965-11970.	7.1	78
67	Cross-species genetic exchange between visceral and cutaneous strains of <i>Leishmania</i> in the sand fly vector. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16808-16813.	7.1	76
68	Molecular evolution inDrosophila and higher diptera. Journal of Molecular Evolution, 1982, 18, 251-264.	1.8	75
69	Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite <i>Leishmania</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E506-E515.	7.1	75
70	LeishmaniaLPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO Journal, 2002, 21, 4458-4469.	7.8	72
71	The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis. Trends in Parasitology, 2014, 30, 412-422.	3.3	72
72	Structures of Leishmania major Pteridine Reductase Complexes Reveal the Active Site Features Important for Ligand Binding and to Guide Inhibitor Design. Journal of Molecular Biology, 2005, 352, 105-116.	4.2	70

#	Article	IF	CITATIONS
73	Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania. PLoS Genetics, 2019, 15, e1008042.	3.5	70
74	The Susceptibility of Trypanosomatid Pathogens to PI3/mTOR Kinase Inhibitors Affords a New Opportunity for Drug Repurposing. PLoS Neglected Tropical Diseases, 2011, 5, e1297.	3.0	70
75	Characterization of inositol phosphorylceramides from Leishmania major by tandem mass spectrometry with electrospray ionization. Journal of the American Society for Mass Spectrometry, 2007, 18, 1591-1604.	2.8	69
76	Regulated expression of the Leishmania major surface virulence factor lipophosphoglycan using conditionally destabilized fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7583-7588.	7.1	69
77	Stable DNA transfection of a wide range of trypanosomatids. Molecular and Biochemical Parasitology, 1991, 46, 169-179.	1.1	68
78	The Leishmania donovani LD1 locus gene ORFG encodes a biopterin transporter (BT1). Molecular and Biochemical Parasitology, 1999, 104, 93-105.	1.1	67
79	Two more independent selectable markers for stable transfection of Leishmania. Molecular and Biochemical Parasitology, 1993, 62, 37-44.	1.1	66
80	Degradation of Host Sphingomyelin Is Essential for Leishmania Virulence. PLoS Pathogens, 2009, 5, e1000692.	4.7	64
81	Differential Microbicidal Effects of Human Histone Proteins H2A and H2B on <i>Leishmania</i> Promastigotes and Amastigotes. Infection and Immunity, 2011, 79, 1124-1133.	2.2	63
82	Identification of a Compensatory Mutant (lpg2 â^' REV) of Leishmania major Able To Survive as Amastigotes within Macrophages without LPG2 -Dependent Glycoconjugates and Its Significance to Virulence and Immunization Strategies. Infection and Immunity, 2004, 72, 3622-3627.	2.2	61
83	Infection with Arginase-Deficient <i>Leishmania major</i> Reveals a Parasite Number-Dependent and Cytokine-Independent Regulation of Host Cellular Arginase Activity and Disease Pathogenesis. Journal of Immunology, 2009, 183, 8068-8076.	0.8	61
84	Mammalian Innate Immune Response to a Leishmania -Resident RNA Virus Increases Macrophage Survival to Promote Parasite Persistence. Cell Host and Microbe, 2016, 20, 318-328.	11.0	61
85	Protective Immunity Against the Protozoan <i>Leishmania chagasi</i> Is Induced by Subclinical Cutaneous Infection with Virulent But Not Avirulent Organisms. Journal of Immunology, 2001, 166, 1921-1929.	0.8	60
86	Simultaneous transient expression assays of the trypanosomatid parasite Leishmania using β-galactosidase and β-glucuronidase as reporter enzymes. Gene, 1991, 103, 119-123.	2.2	59
87	Immunomodulatory and Antileishmanial Activity of Phenylpropanoid Dimers Isolated from <i>Nectandra leucantha</i> . Journal of Natural Products, 2015, 78, 653-657.	3.0	58
88	Leishmaniavirus-Dependent Metastatic Leishmaniasis Is Prevented by Blocking IL-17A. PLoS Pathogens, 2016, 12, e1005852.	4.7	58
89	Two Functionally Divergent UDP-Gal Nucleotide Sugar Transporters Participate in Phosphoglycan Synthesis in Leishmania major*. Journal of Biological Chemistry, 2007, 282, 14006-14017.	3.4	57
90	Differential Induction of TLR3-Dependent Innate Immune Signaling by Closely Related Parasite Species. PLoS ONE, 2014, 9, e88398.	2.5	57

#	Article	IF	CITATIONS
91	Leishmania major Glycosylation Mutants Require Phosphoglycans (lpg2â^') but Not Lipophosphoglycan (lpg1â^') for Survival in Permissive Sand Fly Vectors. PLoS Neglected Tropical Diseases, 2010, 4, e580.	3.0	57
92	Loss of the GP46/M-2 surface membrane glycoprotein gene family in the Leishmania braziliensis complex. Molecular and Biochemical Parasitology, 1992, 50, 151-160.	1.1	55
93	Parasite-Derived Arginase Influences Secondary Anti- <i>Leishmania</i> Immunity by Regulating Programmed Cell Death-1–Mediated CD4+ T Cell Exhaustion. Journal of Immunology, 2013, 190, 3380-3389.	0.8	55
94	Isolation of Genes Mediating Resistance to Inhibitors of Nucleoside and Ergosterol Metabolism in Leishmania by Overexpression/Selection. Journal of Biological Chemistry, 1999, 274, 37723-37730.	3.4	54
95	Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics, 2015, 16, 715.	2.8	54
96	Atypical Manifestations of Cutaneous Leishmaniasis in a Region Endemic for Leishmania braziliensis: Clinical, Immunological and Parasitological Aspects. PLoS Neglected Tropical Diseases, 2016, 10, e0005100.	3.0	54
97	Leishmania tarentolae taxonomic relatedness inferred from phylogenetic analysis of the small subunit ribosomal RNA gene. Molecular and Biochemical Parasitology, 1992, 53, 121-127.	1.1	52
98	Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10 HOâ€THF are essential in <i>Leishmania major</i> . Molecular Microbiology, 2009, 71, 1386-1401.	2.5	52
99	Leishmania donovani lacking the Golgi GDP-Man transporter LPG2 exhibit attenuated virulence in mammalian hosts. Experimental Parasitology, 2009, 122, 182-191.	1.2	51
100	In vivo Imaging of Transgenic Leishmania Parasites in a Live Host. Journal of Visualized Experiments, 2010, , .	0.3	51
101	Recurrent de novo appearance of small linear DNAs in Leishmania major and relationship to extra-chromosomal DNAs in other species. Molecular and Biochemical Parasitology, 1990, 42, 133-141.	1.1	50
102	Comparisons of Mutants Lacking the Golgi UDP-Galactose or GDP-Mannose Transporters Establish that Phosphoglycans Are Important for Promastigote but Not Amastigote Virulence in <i>Leishmania major</i> . Infection and Immunity, 2007, 75, 4629-4637.	2.2	50
103	Estimation of circular DNA size using Î ³ -irradiation and pulsed-field gel electrophoresis. Analytical Biochemistry, 1989, 177, 110-114.	2.4	47
104	<i>Leishmania major</i> Phosphoglycans Influence the Host Early Immune Response by Modulating Dendritic Cell Functions. Infection and Immunity, 2009, 77, 3272-3283.	2.2	46
105	Tilting the balance between RNA interference and replication eradicates <i>Leishmania</i> RNA virus 1 and mitigates the inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11998-12005.	7.1	46
106	Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies. Cellular Microbiology, 2010, 12, 906-918.	2.1	45
107	Muco-cutaneous leishmaniasis in the New World. Virulence, 2011, 2, 547-552.	4.4	44
108	An alternative in vitro drug screening test using Leishmania amazonensis transfected with red fluorescent protein. Diagnostic Microbiology and Infectious Disease, 2013, 75, 282-291.	1.8	44

#	Article	IF	CITATIONS
109	Designing glycoconjugate biosynthesis for an insidious intent: phosphoglycan assembly in Leishmania parasites. Glycobiology, 1997, 7, 873-880.	2.5	43
110	The LPG1 gene family of Leishmania major. Molecular and Biochemical Parasitology, 2004, 136, 11-23.	1.1	43
111	Nuclease mapping and DNA sequence analysis of transcripts from the dihydrofolate reductase-thymidylate synthase (R) region ofLeishmania major. Nucleic Acids Research, 1990, 18, 6399-6408.	14.5	42
112	The PGPA gene of Leishmania major mediates antimony (SbIII) resistance by decreasing influx and not by increasing efflux. Molecular and Biochemical Parasitology, 1994, 68, 145-149.	1.1	42
113	Heterologous Expression of Trypanosoma cruzi trans -Sialidase in Leishmania major Enhances Virulence. Infection and Immunity, 2000, 68, 2728-2734.	2.2	42
114	Leishmania major Survival in Selective Phlebotomus papatasi Sand Fly Vector Requires a Specific SCG-Encoded Lipophosphoglycan Galactosylation Pattern. PLoS Pathogens, 2010, 6, e1001185.	4.7	41
115	The Application of Gene Expression Microarray Technology to Kinetoplastid Research. Current Molecular Medicine, 2004, 4, 611-621.	1.3	40
116	Inoculation of killed <i>Leishmania major</i> into immune mice rapidly disrupts immunity to a secondary challenge via IL-10-mediated process. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13951-13956.	7.1	40
117	A Novel Role for Stat1 in Phagosome Acidification and Natural Host Resistance to Intracellular Infection by Leishmania major. PLoS Pathogens, 2009, 5, e1000381.	4.7	40
118	Innate Immune Activation and Subversion of Mammalian Functions by <i>Leishmania</i> Lipophosphoglycan. Journal of Parasitology Research, 2012, 2012, 1-11.	1.2	40
119	A survey of the Leishmania major Friedlin strain V1 genome by shotgun sequencing: a resource for DNA microarrays and expression profiling. Molecular and Biochemical Parasitology, 2001, 113, 337-340.	1.1	39
120	A Test for Genetic Exchange in Mixed Infections ofLeishmania majorin the Sand FlyPhlebotomus papatasi. Journal of Protozoology, 1991, 38, 224-228.	0.8	37
121	Kinetoplastid-specific histone variant functions are conserved in Leishmania major. Molecular and Biochemical Parasitology, 2013, 191, 53-57.	1.1	37
122	Therapeutic Efficacy of Stable Analogues of Vasoactive Intestinal Peptide against Pathogens. Journal of Biological Chemistry, 2014, 289, 14583-14599.	3.4	37
123	The Leishmania genome project: new insights into gene organization and function. Medical Microbiology and Immunology, 2001, 190, 9-12.	4.8	36
124	Functional Identification of Galactosyltransferases (SCGs) Required for Species-specific Modifications of the Lipophosphoglycan Adhesin Controlling Leishmania major-Sand Fly Interactions. Journal of Biological Chemistry, 2003, 278, 15523-15531.	3.4	36
125	Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA <i>Leishmania</i> RNA virus 1 (LRV1) pathogenicity factor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E811-E819.	7.1	36
126	Leishmania majorPteridine Reductase 1 Belongs to the Short Chain Dehydrogenase Family:Â Stereochemical and Kinetic Evidenceâ€. Biochemistry, 1998, 37, 4093-4104.	2.5	35

#	Article	IF	CITATIONS
127	Identification of Genes Encoding Arabinosyltransferases (SCA) Mediating Developmental Modifications of Lipophosphoglycan Required for Sand Fly Transmission of Leishmania major. Journal of Biological Chemistry, 2003, 278, 28840-28848.	3.4	35
128	Reconstitution of GDP-mannose Transport Activity with Purified Leishmania LPG2 Protein in Liposomes. Journal of Biological Chemistry, 2005, 280, 2028-2035.	3.4	35
129	Sphingolipids in Parasitic Protozoa. Advances in Experimental Medicine and Biology, 2010, 688, 238-248.	1.6	35
130	Sequence and S1 nuclease mapping of the 5′ region of the dihydrofolate reductase—thymidylate synthase gene ofLeishmania major. Nucleic Acids Research, 1987, 15, 3369-3383.	14.5	34
131	Hijacking the Cell: Parasites in the Driver's Seat. Cell, 1996, 87, 787-789.	28.9	34
132	Stage-specific activity of the Leishmania major CRK3 kinase and functional rescue of a Schizosaccharomyces pombe cdc2 mutant. Molecular and Biochemical Parasitology, 1998, 96, 139-150.	1.1	34
133	Immunization with Persistent Attenuated Δlpg2 Leishmania major Parasites Requires Adjuvant To Provide Protective Immunity in C57BL/6 Mice. Infection and Immunity, 2006, 74, 777-780.	2.2	33
134	Phylogenomic and Functional Analysis of Pterin-4a-Carbinolamine Dehydratase Family (COG2154) Proteins in Plants and Microorganisms Â. Plant Physiology, 2008, 146, 1515-1527.	4.8	33
135	Stable amplification of a linear extrachromosomal DNA in mycophenolic acid-resistant Leishmania donovani. Molecular and Biochemical Parasitology, 1992, 55, 197-206.	1.1	32
136	Leishmania mexicana promastigotes induce cytotoxic T lymphocytesin vivo that do not recognize infected macrophages. European Journal of Immunology, 1993, 23, 217-223.	2.9	32
137	The Role of the Mitochondrial Glycine Cleavage Complex in the Metabolism and Virulence of the Protozoan Parasite Leishmania major. Journal of Biological Chemistry, 2008, 283, 155-165.	3.4	32
138	Unusual Galactofuranose Modification of a Capsule Polysaccharide in the Pathogenic Yeast Cryptococcus neoformans. Journal of Biological Chemistry, 2013, 288, 10994-11003.	3.4	32
139	Killed but Metabolically Active Leishmania infantum as a Novel Whole-Cell Vaccine for Visceral Leishmaniasis. Vaccine Journal, 2012, 19, 490-498.	3.1	31
140	Exacerbated Leishmaniasis Caused by a Viral Endosymbiont can be Prevented by Immunization with Its Viral Capsid. PLoS Neglected Tropical Diseases, 2017, 11, e0005240.	3.0	31
141	Blasticidin resistance: a new independent marker for stable transfection of Leishmania. Molecular and Biochemical Parasitology, 2000, 108, 249-252.	1.1	30
142	Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2000, 30, 1003-1008.	2.7	30
143	Characterization of quinonoid-Dihydropteridine Reductase (QDPR) from the Lower Eukaryote Leishmania major. Journal of Biological Chemistry, 2002, 277, 38245-38253.	3.4	30
144	PTR1-dependent synthesis of tetrahydrobiopterin contributes to oxidant susceptibility in the trypanosomatid protozoan parasite Leishmania major. Current Genetics, 2009, 55, 287-299.	1.7	30

#	Article	IF	CITATIONS
145	Thymidine kinase as a negative selectable marker in Leishmania major. Molecular and Biochemical Parasitology, 1992, 51, 321-325.	1.1	29
146	Epitope cleavage byLeishmania endopeptidase(s) limits the efficiency of the exogenous pathway of major histocompatibility complex class I-associated antigen presentation. European Journal of Immunology, 1997, 27, 1005-1013.	2.9	29
147	A <i>Narnavirus</i> -Like Element from the Trypanosomatid Protozoan Parasite <i>Leptomonas seymouri</i> . Genome Announcements, 2016, 4, .	0.8	29
148	Genomic organization and expression of the expanded SCG/L/R gene family of Leishmania major: Internal clusters and telomeric localization of SCGs mediating species-specific LPG modifications. Molecular and Biochemical Parasitology, 2006, 146, 231-241.	1.1	28
149	TLR2 Signaling in Skin Nonhematopoietic Cells Induces Early Neutrophil Recruitment in Response to Leishmania major Infection. Journal of Investigative Dermatology, 2019, 139, 1318-1328.	0.7	28
150	Insertional mutagenesis by a modified in vitro Ty1 transposition system. Gene, 1997, 198, 27-35.	2.2	27
151	Putting the Leishmania genome to work: functional genomics by transposon trapping and expression profiling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 47-53.	4.0	27
152	Uncovering Leishmania–macrophage interplay using imaging flow cytometry. Journal of Immunological Methods, 2015, 423, 93-98.	1.4	27
153	Severe Cutaneous Leishmaniasis in a Human Immunodeficiency Virus Patient Coinfected with Leishmania braziliensis and Its Endosymbiotic Virus. American Journal of Tropical Medicine and Hygiene, 2016, 94, 840-843.	1.4	27
154	Leishmanicidal Activity of Two Naphthoquinones against <i>Leishmania donovani</i> . Biological and Pharmaceutical Bulletin, 2012, 35, 1761-1764.	1.4	26
155	Amplification of a New Region of DNA in an Unselected Laboratory Stock ofL. tarentolae: The T Region. Journal of Protozoology, 1989, 36, 257-261.	0.8	25
156	Antigens targeted to the Leishmania phagolysosome are processed for CD4+ T cell recognition. European Journal of Immunology, 1993, 23, 2311-2319.	2.9	25
157	The structure and repertoire of small interfering <scp>RNAs</scp> in <scp><i>L</i></scp> <i>eishmania (</i> <scp><i>V</i></scp> <i>iannia) braziliensis</i> reveal diversification in the trypanosomatid <scp>RNAi</scp> pathway. Molecular Microbiology, 2013, 87, 580-593.	2.5	24
158	Low frequency of LRV1 in Leishmania braziliensis strains isolated from typical and atypical lesions in the State of Minas Gerais, Brazil. Molecular and Biochemical Parasitology, 2016, 210, 50-54.	1.1	24
159	Leishmania guyanensis parasites block the activation of the inflammasome by inhibiting maturation of IL-1β. Microbial Cell, 2018, 5, 137-149.	3.2	24
160	Leishmania donovani has distinct mannosylphosphoryltransferases for the initiation and elongation phases of lipophosphoglycan repeating unit biosynthesis. Molecular and Biochemical Parasitology, 1998, 94, 27-40.	1.1	23
161	Multipleâ€stage linear ionâ€trap with high resolution mass spectrometry towards complete structural characterization of phosphatidylethanolamines containing cyclopropane fatty acyl chain in <i>Leishmania infantum</i> . Journal of Mass Spectrometry, 2014, 49, 201-209.	1.6	23
162	A Novel Bunyavirus-Like Virus of Trypanosomatid Protist Parasites. Genome Announcements, 2016, 4, .	0.8	23

#	Article	IF	CITATIONS
163	Evolution of nuclear DNA and the occurrence of sequences related to new small chromosomal DNAs in the trypanosomatid genus Endotrypanum. Molecular and Biochemical Parasitology, 1990, 40, 151-161.	1.1	22
164	A Molecular Docking Strategy Identifies Eosin B as a Non-active Site Inhibitor of Protozoal Bifunctional Thymidylate Synthase-Dihydrofolate Reductase. Journal of Biological Chemistry, 2003, 278, 14092-14100.	3.4	22
165	Biochemical and Genetic Analysis of Methylenetetrahydrofolate Reductase in Leishmania Metabolism and Virulence*. Journal of Biological Chemistry, 2006, 281, 38150-38158.	3.4	22
166	Identification of Transport-critical Residues in a Folate Transporter from the Folate-Biopterin Transporter (FBT) Family. Journal of Biological Chemistry, 2010, 285, 2867-2875.	3.4	22
167	A transposon toolkit for gene transfer and mutagenesis in protozoan parasites. Genetica, 2010, 138, 301-311.	1.1	21
168	Amplification of an alternate transporter gene suppresses the avirulent phenotype of glucose transporter null mutants in <i>Leishmania mexicana</i> . Molecular Microbiology, 2009, 71, 369-381.	2.5	20
169	Differential Impact of LPG-and PG-Deficient Leishmania major Mutants on the Immune Response of Human Dendritic Cells. PLoS Neglected Tropical Diseases, 2015, 9, e0004238.	3.0	20
170	A <i>Narnavirus</i> in the Trypanosomatid Protist Plant Pathogen <i>Phytomonas serpens</i> . Genome Announcements, 2016, 4, .	0.8	20
171	Crystallization of recombinant Leishmania major pteridine reductase 1 (PTR1). Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1608-1610.	2.5	19
172	The antioxidant response favors Leishmania parasites survival, limits inflammation and reprograms the host cell metabolism. PLoS Pathogens, 2021, 17, e1009422.	4.7	19
173	Deletion of UDP-glucose pyrophosphorylase reveals a UDP-glucose independent UDP-galactose salvage pathway in Leishmania major. Glycobiology, 2010, 20, 872-882.	2.5	18
174	Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP Il termination. Molecular Microbiology, 2016, 101, 559-574.	2.5	18
175	Genetic metabolic complementation establishes a requirement for GDP-fucose in Leishmania. Journal of Biological Chemistry, 2017, 292, 10696-10708.	3.4	18
176	Dramatic changes in gene expression in different forms of Crithidia fasciculata reveal potential mechanisms for insect-specific adhesion in kinetoplastid parasites. PLoS Neglected Tropical Diseases, 2019, 13, e0007570.	3.0	18
177	The H region HTBF gene mediates terbinafine resistance in Leishmania major. Molecular and Biochemical Parasitology, 2003, 131, 77-81.	1.1	17
178	Monitoring the efficacy of antimicrobial photodynamic therapy in a murine model of cutaneous leishmaniasis using <i>L. major</i> expressing GFP. Journal of Biophotonics, 2010, 3, 328-335.	2.3	17
179	Protective Role of the Neuropeptide Urocortin II against Experimental Sepsis and Leishmaniasis by Direct Killing of Pathogens. Journal of Immunology, 2013, 191, 6040-6051.	0.8	17
180	New Mos1 mariner transposons suitable for the recovery of gene fusions in vivo and in vitro. Gene, 2001, 280, 97-105.	2.2	16

#	Article	IF	CITATIONS
181	Sequence of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene ofLeishmania amazonensis. Nucleic Acids Research, 1990, 18, 2819-2819.	14.5	15
182	Transposition of the Drosophila element mariner within the human malaria parasite Plasmodium falciparum. Molecular and Biochemical Parasitology, 2000, 110, 405-407.	1.1	15
183	Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major. Molecular and Biochemical Parasitology, 2011, 175, 58-67.	1.1	15
184	The Evolutionary Loss of RNAi Key Determinants in Kinetoplastids as a Multiple Sporadic Phenomenon. Journal of Molecular Evolution, 2017, 84, 104-115.	1.8	15
185	SODB1 is essential for Leishmania major infection of macrophages and pathogenesis in mice. PLoS Neglected Tropical Diseases, 2018, 12, e0006921.	3.0	15
186	Importance of polyphosphate in the Leishmania life cycle. Microbial Cell, 2018, 5, 371-384.	3.2	15
187	Leishmania donovaniPossess a NADPH-Dependent Alkylglycerol Cleavage Enzyme. Biochemical and Biophysical Research Communications, 1996, 227, 885-889.	2.1	13
188	Concomitant Immunity Induced by Persistent Leishmania major Does Not Preclude Secondary Re-Infection: Implications for Genetic Exchange, Diversity and Vaccination. PLoS Neglected Tropical Diseases, 2016, 10, e0004811.	3.0	13
189	Tests of heterologous promoters and intergenic regions in Leishmania major. Molecular and Biochemical Parasitology, 2000, 105, 163-167.	1.1	12
190	Leishmania major intracellular survival is not altered in SHP-1 deficient mev or CD45â^'/â^' mice. Experimental Parasitology, 2008, 120, 275-279.	1.2	12
191	Leishmania Sexual Reproductive Strategies as Resolved through Computational Methods Designed for Aneuploid Genomes. Genes, 2021, 12, 167.	2.4	12
192	The enzymes of the 10-formyl-tetrahydrofolate synthetic pathway are found exclusively in the cytosol of the trypanosomatid parasite Leishmania major. Molecular and Biochemical Parasitology, 2009, 166, 142-152.	1.1	11
193	A broadly active fucosyltransferase LmjFUT1 whose mitochondrial localization and activity are essential in parasitic <i>Leishmania</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
194	An essential, kinetoplastid-specific GDP-Fuc: β-D-Gal α-1,2-fucosyltransferase is located in the mitochondrion of Trypanosoma brucei. ELife, 2021, 10, .	6.0	11
195	Conservation of the LD1 region in Leishmania includes DNA implicated in LD1 amplification. Molecular and Biochemical Parasitology, 2001, 113, 315-321.	1.1	10
196	CRISPR for Cryptosporidium. Nature, 2015, 523, 413-414.	27.8	10
197	Demonstration by heterologous expression that the Leishmania SCA1 gene encodes an arabinopyranosyltransferase. Glycobiology, 2006, 16, 230-236.	2.5	9
198	â€~Transient' genetic suppression facilitates generation of hexose transporter null mutants in <i><scp>L</scp>eishmania mexicana</i> . Molecular Microbiology, 2013, 87, 412-429.	2.5	9

#	Article	IF	CITATIONS
199	Remodeling of protein and mRNA expression in Leishmania mexicana induced by deletion of glucose transporter genes. Molecular and Biochemical Parasitology, 2011, 175, 39-48.	1.1	8
200	Genome Assemblies across the Diverse Evolutionary Spectrum of <i>Leishmania</i> Protozoan Parasites. Microbiology Resource Announcements, 2021, 10, e0054521.	0.6	8
201	Priming of a β-Galactosidase (β-GAL)-Specific Type 1 Response in BALB/c Mice Infected with β-GAL-Transfected Leishmania major. Infection and Immunity, 2000, 68, 809-814.	2.2	7
202	In Vitro Shuttle Mutagenesis Using Engineered Mariner Transposons. , 2004, 270, 299-318.		7
203	Flypaper for Parasites. Cell, 2004, 119, 311-312.	28.9	7
204	Development of a semi-automated image-based high-throughput drug screening system. Frontiers in Bioscience - Elite, 2018, 10, 242-253.	1.8	7
205	Concentration of 2′C-methyladenosine triphosphate by Leishmania guyanensis enables specific inhibition of Leishmania RNA virus 1 via its RNA polymerase. Journal of Biological Chemistry, 2018, 293, 6460-6469.	3.4	6
206	Deficiency of Leishmania Phosphoglycans Influences the Magnitude but Does Not Affect the Quality of Secondary (Memory) Anti-Leishmania Immunity. PLoS ONE, 2013, 8, e66058.	2.5	6
207	Genetic and genomic approaches to the analysis of Leishmania virulence. , 2003, , 111-122.		5
208	REDHORSE-REcombination and Double crossover detection in Haploid Organisms using next-geneRation SEquencing data. BMC Genomics, 2015, 16, 133.	2.8	5
209	Inhibitor of growth protein 3 epigenetically silences endogenous retroviral elements and prevents innate immune activation. Nucleic Acids Research, 2021, 49, 12706-12715.	14.5	4
210	Identification of a DNA fragment that increases mitotic stability of episomal linear DNAs in Leishmania major. International Journal for Parasitology, 2005, 35, 973-980.	3.1	3
211	African Trypanosomes Find a Fat Haven. Cell Host and Microbe, 2016, 19, 748-749.	11.0	3
212	Spontaneous excision and facilitated recovery as a control for phenotypes arising from RNA interference and other dominant transgenes. Molecular and Biochemical Parasitology, 2018, 220, 42-45.	1.1	3
213	Mannogen-ing Central Carbon Metabolism by Leishmania. Trends in Parasitology, 2019, 35, 947-949.	3.3	3
214	Evaluation of α,β-Unsaturated Ketones as Antileishmanial Agents. Antimicrobial Agents and Chemotherapy, 2015, 59, 3598-3601.	3.2	2
215	Host-microbe interactions: fungi/viruses/parasites. Current Opinion in Microbiology, 1999, 2, 343-347.	5.1	1
216	Unstable and Stable Gene Amplification in Methotrexate-Resistant Leishmania Major and Natural		1

Isolates of Leishmania Tarentolae. , 1989, , 873-877.

#	Article	IF	CITATIONS
217	Naturally-occurring gene amplifications conferring drug resistance in Leishmania Tarentolae. Memorias Do Instituto Oswaldo Cruz, 1988, 83, 330-333.	1.6	1
218	Interplay of Trypanosome Lytic Factor and innate immune cells in the resolution of cutaneous Leishmania infection. PLoS Pathogens, 2021, 17, e1008768.	4.7	0
219	Sequence and biochemical characterization of equilibrative nucleoside transporters from Crithidia fasciculata : seeking ligand binding residues. FASEB Journal, 2010, 24, 699.1.	0.5	0
220	The Association of Leishmania RNA Viruses with metastatic or mucocutaneous Leishmaniasis in South America. FASEB Journal, 2012, 26, 801.4.	0.5	0
221	A Transposon-Based Tool for Transformation and Mutagenesis in Trypanosomatid Protozoa. Methods in Molecular Biology, 2015, 1201, 235-245.	0.9	0