
Seiichi Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1525172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The relationship between inflammatory gene expression, PAHs content of PM _{2.5 } and respiratory disease. Japanese Journal of Health and Human Ecology, 2022, 88, 3-14.	0.0	0
2	Research trends on biological effects of heated tobacco product. Indoor Environment, 2021, 24, 109-116.	0.1	1
3	Effects of Fetal Exposure to Heat-Not-Burn Tobacco on Testicular Function in Male Offspring. Biological and Pharmaceutical Bulletin, 2020, 43, 1687-1692.	1.4	2
4	Investigation of inflammation inducing substances in PM2.5 particles by an elimination method using thermal decomposition. Environmental Toxicology, 2019, 34, 1137-1148.	4.0	8
5	Role of iron and oxidative stress in the exacerbation of allergic inflammation in murine lungs caused by urban particulate matter <2.5Âl¼m and desert dust. Journal of Applied Toxicology, 2019, 39, 855-867.	2.8	18
6	Synergistic effect of carbon nuclei and polyaromatic hydrocarbons on respiratory and immune responses. Environmental Toxicology, 2017, 32, 2172-2181.	4.0	14
7	PM2.5-induced lung inflammation in mice: Differences of inflammatory response in macrophages and type II alveolar cells. Journal of Applied Toxicology, 2017, 37, 1203-1218.	2.8	142
8	Urban PM2.5 exacerbates allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway. Scientific Reports, 2017, 7, 11027.	3.3	76
9	Biological factor related to Asian sand dust particles contributes to the exacerbation of asthma. Journal of Applied Toxicology, 2017, 37, 583-590.	2.8	11
10	Effects of Fetal Exposure to Asian Sand Dust on Development and Reproduction in Male Offspring. International Journal of Environmental Research and Public Health, 2016, 13, 1173.	2.6	3
11	Differences in allergic inflammatory responses in murine lungs: comparison of PM2.5 and coarse PM collected during the hazy events in a Chinese city. Inhalation Toxicology, 2016, 28, 706-718.	1.6	16
12	Exposure to bisphenol A enhanced lung eosinophilia in adult male mice. Allergy, Asthma and Clinical Immunology, 2016, 12, 16.	2.0	24
13	Desert dust induces TLR signaling to trigger Th2-dominant lung allergic inflammation via a MyD88-dependent signaling pathway. Toxicology and Applied Pharmacology, 2016, 296, 61-72.	2.8	29
14	Silicaâ€carrying particulate matter enhances <scp><i>B</i></scp> <i>jerkandera adusta</i> â€induced murine lung eosinophilia. Environmental Toxicology, 2016, 31, 93-105.	4.0	10
15	Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs. Toxicology and Applied Pharmacology, 2016, 297, 41-55.	2.8	87
16	PM2.5-rich dust collected from the air in Fukuoka, Kyushu, Japan, can exacerbate murine lung eosinophilia. Inhalation Toxicology, 2015, 27, 287-299.	1.6	32
17	Enhancement of OVA-induced murine lung eosinophilia by co-exposure to contamination levels of LPS in Asian sand dust and heated dust. Allergy, Asthma and Clinical Immunology, 2014, 10, 30.	2.0	29
18	Induction of immune tolerance and reduction of aggravated lung eosinophilia by co-exposure to Asian sand dust and ovalbumin for 14Âweeks in mice. Allergy, Asthma and Clinical Immunology, 2013, 9, 19.	2.0	11

Seiichi Yoshida

#	Article	IF	CITATIONS
19	Effects of Fetal Exposure to Urban Particulate Matter on the Immune System of Male Mouse Offspring. Biological and Pharmaceutical Bulletin, 2012, 35, 1238-1243.	1.4	11
20	Effects of fetal exposure to carbon nanoparticles on reproductive function in male offspring. Fertility and Sterility, 2010, 93, 1695-1699.	1.0	116
21	Urban particulate matter in Beijing, China, enhances allergen-induced murine lung eosinophilia. Inhalation Toxicology, 2010, 22, 709-718.	1.6	37
22	Diesel exhaust particles suppress expression of sex steroid hormone receptors in TM3 mouse Leydig cells. Environmental Toxicology and Pharmacology, 2007, 24, 292-296.	4.0	8
23	Effect of Diesel Exhaust on Development of Fetal Reproductive Function in ICR Female Mice. Journal of Health Science, 2004, 50, 174-180.	0.9	17