David Venzke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523840/publications.pdf

Version: 2024-02-01

331670 526287 2,272 27 21 27 citations h-index g-index papers 31 31 31 2268 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice. Journal of Cell Biology, 1998, 142, 1461-1471.	5.2	331
2	ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nature Genetics, 2012, 44, 575-580.	21.4	212
3	SGK196 Is a Glycosylation-Specific <i>O</i> -Mannose Kinase Required for Dystroglycan Function. Science, 2013, 341, 896-899.	12.6	197
4	Sarcospan, the 25-kDa Transmembrane Component of the Dystrophin-Glycoprotein Complex. Journal of Biological Chemistry, 1997, 272, 31221-31224.	3.4	165
5	Î ² Subunit Heterogeneity in N-type Ca2+ Channels. Journal of Biological Chemistry, 1996, 271, 3207-3212.	3.4	132
6	Functional Rescue of the Sarcoglycan Complex in the BIO 14.6 Hamster Using δ-Sarcoglycan Gene Transfer. Molecular Cell, 1998, 1, 841-848.	9.7	120
7	LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature, 2013, 503, 136-140.	27.8	112
8	Molecular Pathogenesis of Muscle Degeneration in the δ-Sarcoglycan-Deficient Hamster. American Journal of Pathology, 1998, 153, 1623-1630.	3.8	107
9	The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. ELife, 2014, 3, .	6.0	96
10	Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nature Chemical Biology, 2016, 12, 810-814.	8.0	88
11	Characterization of Î-Sarcoglycan, a Novel Component of the Oligomeric Sarcoglycan Complex Involved in Limb-Girdle Muscular Dystrophy. Journal of Biological Chemistry, 1996, 271, 32321-32329.	3.4	87
12	Composition of Corn Steep Water during Steeping. Journal of Agricultural and Food Chemistry, 1996, 44, 1857-1863.	5.2	79
13	Caveolin-3 is not an integral component of the dystrophin glycoprotein complex. FEBS Letters, 1998, 427, 279-282.	2.8	75
14	Three-dimensional Map of a Plant V-ATPase Based on Electron Microscopy. Journal of Biological Chemistry, 2002, 277, 13115-13121.	3.4	70
15	A Different Conformation for EGC Stator Subcomplex in Solution and in the Assembled Yeast V-ATPase: Possible Implications for Regulatory Disassembly. Structure, 2008, 16, 1789-1798.	3.3	69
16	The glycans of soybean peroxidase. Glycobiology, 1996, 6, 23-32.	2.5	51
17	Building the Stator of the Yeast Vacuolar-ATPase. Journal of Biological Chemistry, 2004, 279, 40670-40676.	3.4	49
18	Elucidation of the Stator Organization in the V-ATPase of Neurospora crassa. Journal of Molecular Biology, 2005, 349, 659-669.	4.2	43

#	Article	IF	CITATION
19	Sarcoglycan Complex. Journal of Biological Chemistry, 2009, 284, 19178-19182.	3.4	35
20	Peripheral Stator of the Yeast V-ATPase: Stoichiometry and Specificity of Interaction between the EG Complex and Subunits C and Hâ€. Biochemistry, 2005, 44, 15906-15914.	2.5	34
21	Structure of protein O-mannose kinase reveals a unique active site architecture. ELife, 2016, 5, .	6.0	33
22	Endogenous Glucuronyltransferase Activity of LARGE or LARGE2 Required for Functional Modification of α-Dystroglycan in Cells and Tissues. Journal of Biological Chemistry, 2014, 289, 28138-28148.	3.4	19
23	POMK regulates dystroglycan function via LARGE1-mediated elongation of matriglycan. ELife, 2020, 9, .	6.0	19
24	HNK-1 sulfotransferase modulates $\hat{l}\pm$ -dystroglycan glycosylation by 3-O-sulfation of glucuronic acid on matriglycan. Glycobiology, 2020, 30, 817-829.	2.5	17
25	Protective role for the N-terminal domain of α-dystroglycan in Influenza A virus proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11396-11401.	7.1	13
26	<i>Large1</i> gene transfer in older <i>myd</i> mice with severe muscular dystrophy restores muscle function and greatly improves survival. Science Advances, 2022, 8, .	10.3	7
27	Muscular dystrophy-dystroglycanopathy in a family of Labrador retrievers with a LARGE1 mutation. Neuromuscular Disorders, 2021, 31, 1169-1178.	0.6	6