
Sandro Sonnino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel insights on GM1 and Parkinson's disease: A critical review. Glycoconjugate Journal, 2022, 39, 27.	2.7	8
2	Gangliosides and the Treatment of Neurodegenerative Diseases: A Long Italian Tradition. Biomedicines, 2022, 10, 363.	3.2	13
3	Massive Accumulation of Sphingomyelin Affects the Lysosomal and Mitochondria Compartments and Promotes Apoptosis in Niemann-Pick Disease Type A. Journal of Molecular Neuroscience, 2022, 72, 1482-1499.	2.3	5
4	Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconjugate Journal, 2021, 38, 101-117.	2.7	19
5	The structure of gangliosides hides a code for determining neuronal functions. FEBS Open Bio, 2021, 11, 3193-3200.	2.3	18
6	A pathogenic HEXA missense variant in wild boars with Tay-Sachs disease. Molecular Genetics and Metabolism, 2021, 133, 297-306.	1.1	2
7	Glycans in autophagy, endocytosis and lysosomal functions. Clycoconjugate Journal, 2021, 38, 625-647.	2.7	15
8	Glycosphingolipids. Advances in Experimental Medicine and Biology, 2021, 1325, 61-102.	1.6	11
9	Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. Journal of Lipid Research, 2020, 61, 636-654.	4.2	88
10	Sphingolipids and plasma membrane hydrolases in human primary bronchial cells during differentiation and their altered patterns in cystic fibrosis. Glycoconjugate Journal, 2020, 37, 623-633.	2.7	10
11	Modulation of calcium signaling depends on the oligosaccharide of GM1 in Neuro2a mouse neuroblastoma cells. Glycoconjugate Journal, 2020, 37, 713-727.	2.7	12
12	Homeostatic and pathogenic roles of <scp>GM</scp> 3 ganglioside molecular species in <scp>TLR</scp> 4 signaling in obesity. EMBO Journal, 2020, 39, e101732.	7.8	25
13	Gangliosides in the differentiation process of primary neurons: the specific role of GM1-oligosaccharide. Glycoconjugate Journal, 2020, 37, 329-343.	2.7	22
14	GM1 as Adjuvant of Innovative Therapies for Cystic Fibrosis Disease. International Journal of Molecular Sciences, 2020, 21, 4486.	4.1	11
15	GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 868.	4.1	91
16	The oligosaccharide portion of ganglioside GM1 regulates mitochondrial function in neuroblastoma cells. Glycoconjugate Journal, 2020, 37, 293-306.	2.7	18
17	GM1 Oligosaccharide Crosses the Human Blood–Brain Barrier In Vitro by a Paracellular Route. International Journal of Molecular Sciences, 2020, 21, 2858.	4.1	29
18	Sphingolipids and neuronal degeneration in lysosomal storage disorders. Journal of Neurochemistry, 2019, 148, 600-611.	3.9	37

#	Article	IF	CITATIONS
19	Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Frontiers in Pharmacology, 2019, 10, 807.	3.5	72
20	The Neuroprotective Role of the GM1 Oligosaccharide, II3Neu5Ac-Gg4, in Neuroblastoma Cells. Molecular Neurobiology, 2019, 56, 6673-6702.	4.0	19
21	<scp>GM</scp> 1 promotes TrkAâ€mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. Journal of Neurochemistry, 2019, 149, 231-241.	3.9	30
22	Parkinson's disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/â^' mouse model. Scientific Reports, 2019, 9, 19330.	3.3	34
23	Human Remyelination Promoting Antibody Stimulates Astrocytes Proliferation Through Modulation of the Sphingolipid Rheostat in Primary Rat Mixed Glial Cultures. Neurochemical Research, 2019, 44, 1460-1474.	3.3	8
24	On the use of cholera toxin. Glycoconjugate Journal, 2018, 35, 161-163.	2.7	14
25	Abiraterone and Ionizing Radiation Alter the Sphingolipid Homeostasis in Prostate Cancer Cells. Advances in Experimental Medicine and Biology, 2018, 1112, 293-307.	1.6	5
26	Biochemical Characterization of the GBA2 c.1780G>C Missense Mutation in Lymphoblastoid Cells from Patients with Spastic Ataxia. International Journal of Molecular Sciences, 2018, 19, 3099.	4.1	11
27	Radioactive Gangliosides for Biological Studies. Methods in Molecular Biology, 2018, 1804, 311-322.	0.9	4
28	A lysosomeâ€plasma membraneâ€sphingolipid axis linking lysosomal storage to cell growth arrest. FASEB Journal, 2018, 32, 5685-5702.	0.5	32
29	Assignment by Negative-Ion Electrospray Tandem Mass Spectrometry of the Tetrasaccharide Backbones of Monosialylated Glycans Released from Bovine Brain Gangliosides. Journal of the American Society for Mass Spectrometry, 2018, 29, 1308-1318.	2.8	3
30	Neuronal membrane dynamics as fine regulator of sphingolipid composition. Glycoconjugate Journal, 2018, 35, 397-402.	2.7	6
31	Gangliosides in Membrane Organization. Progress in Molecular Biology and Translational Science, 2018, 156, 83-120.	1.7	48
32	Chemical and Physicochemical Properties of Gangliosides. Methods in Molecular Biology, 2018, 1804, 1-17.	0.9	5
33	Nuclear Magnetic Resonance of Gangliosides. Methods in Molecular Biology, 2018, 1804, 241-284.	0.9	3
34	Serum Antibodies to Glycans in Peripheral Neuropathies. Molecular Neurobiology, 2017, 54, 1564-1567.	4.0	9
35	Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. Journal of Biological Chemistry, 2017, 292, 7040-7051.	3.4	15
36	Role of the <scp>GM</scp> 1 ganglioside oligosaccharide portion in the TrkAâ€dependent neurite sprouting in neuroblastoma cells. Journal of Neurochemistry, 2017, 143, 645-659.	3.9	53

#	Article	IF	CITATIONS
37	Evidence for the Involvement of Lipid Rafts and Plasma Membrane Sphingolipid Hydrolases in Pseudomonas aeruginosa Infection of Cystic Fibrosis Bronchial Epithelial Cells. Mediators of Inflammation, 2017, 2017, 1-16.	3.0	16
38	Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chemistry and Physics of Lipids, 2016, 200, 94-103.	3.2	26
39	The role of sphingolipids in neuronal plasticity of the brain. Journal of Neurochemistry, 2016, 137, 485-488.	3.9	33
40	Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Science Signaling, 2016, 9, ra101.	3.6	58
41	The Role of 3-O-Sulfogalactosylceramide, Sulfatide, in the Lateral Organization of Myelin Membrane. Neurochemical Research, 2016, 41, 130-143.	3.3	35
42	GM1 Ganglioside: Past Studies and Future Potential. Molecular Neurobiology, 2016, 53, 1824-1842.	4.0	112
43	Isolation and Analysis of Detergent-Resistant Membrane Fractions. Methods in Molecular Biology, 2016, 1376, 107-131.	0.9	17
44	Identification of the antigen recognized by rHIgM22, a remyelination-promoting human monoclonal antibody. SpringerPlus, 2015, 4, .	1.2	1
45	Glycohydrolases in the central nervous system: the role of GBA2 in the neuronal differentiation. SpringerPlus, 2015, 4, .	1.2	Ο
46	Membrane lipid domains in the nervous system. Frontiers in Bioscience - Landmark, 2015, 20, 280-302.	3.0	28
47	Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. Journal of Lipid Research, 2015, 56, 129-141.	4.2	46
48	Lipid membrane domains in the brain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1006-1016.	2.4	106
49	Phosphatidic acidâ€mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration. FASEB Journal, 2015, 29, 2099-2111.	0.5	23
50	GBA2-Encoded β-Glucosidase Activity Is Involved in the Inflammatory Response to Pseudomonas aeruginosa. PLoS ONE, 2014, 9, e104763.	2.5	19
51	Exploring the link between ceramide and ionizing radiation. Clycoconjugate Journal, 2014, 31, 449-459.	2.7	34
52	Lipid Rafts in Neurodegeneration and Neuroprotection. Molecular Neurobiology, 2014, 50, 130-148.	4.0	74
53	Chaperone Therapy for GM2 Gangliosidosis: Effects of Pyrimethamine on β-Hexosaminidase Activity in Sandhoff Fibroblasts. Molecular Neurobiology, 2014, 50, 159-167.	4.0	30
54	The Glycosphingolipid Hydrolases in the Central Nervous System. Molecular Neurobiology, 2014, 50, 76-87.	4.0	11

#	Article	IF	CITATIONS
55	iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nature Communications, 2014, 5, 4028.	12.8	436
56	Gangliosides and Cell Surface Ganglioside Glycohydrolases in the Nervous System. Advances in Neurobiology, 2014, 9, 223-244.	1.8	15
57	A practical route to long-chain non-natural α,ï‰-diamino acids. Amino Acids, 2013, 44, 435-441.	2.7	5
58	Gangliosides as regulators of cell signaling: gangliosideâ€protein interactions or gangliosideâ€driven membrane organization?. Journal of Neurochemistry, 2013, 124, 432-435.	3.9	33
59	The oxysterol–CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. Journal of Experimental Medicine, 2013, 210, 1711-1728.	8.5	167
60	Anti-GM1/GD1a complex antibodies in GBS sera specifically recognize the hybrid dimer GM1-GD1a. Glycobiology, 2012, 22, 352-360.	2.5	18
61	The galactocerebrosidase enzyme contributes to maintain a functional neurogenic niche during early post-natal CNS development. Human Molecular Genetics, 2012, 21, 4732-4750.	2.9	33
62	Interactions Between Caveolin-1 and Sphingolipids, and Their Functional Relevance. Advances in Experimental Medicine and Biology, 2012, 749, 97-115.	1.6	4
63	Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts. Journal of Inherited Metabolic Disease, 2012, 35, 1081-1091.	3.6	35
64	lonizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content. Glycoconjugate Journal, 2012, 29, 585-597.	2.7	22
65	Ganglioside GM1 forces the redistribution of cholesterol in a biomimetic membrane. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2860-2867.	2.6	30
66	Ceramides as Possible Nutraceutical Compounds: Characterization of the Ceramides of the Moro Blood Orange (Citrus sinensis). Journal of Agricultural and Food Chemistry, 2012, 60, 10103-10110.	5.2	12
67	Plasma Membrane-Associated Glycohydrolases Along Differentiation of Murine Neural Stem Cells. Neurochemical Research, 2012, 37, 1344-1354.	3.3	19
68	Plasma Membrane-Associated Glycohydrolases Activation by Extracellular Acidification due to Proton Exchangers. Neurochemical Research, 2012, 37, 1296-1307.	3.3	14
69	β-Hexosaminidase over-expression affects lysosomal glycohydrolases expression and glycosphingolipid metabolism in mammalian cells. Molecular and Cellular Biochemistry, 2012, 363, 109-118.	3.1	8
70	Aberrant Glycosphingolipid Expression and Membrane Organization in Tumor Cells: Consequences on Tumor–Host Interactions. Advances in Experimental Medicine and Biology, 2011, 705, 643-667.	1.6	10
71	Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. Journal of Neurochemistry, 2011, 116, 891-899.	3.9	44
72	Nanoscale structural response of gangliosideâ€containing aggregates to the interaction with sialidase. Journal of Neurochemistry, 2011, 116, 833-839.	3.9	13

#	Article	IF	CITATIONS
73	Brain pathology in Niemann Pick disease type A: insights from the acid sphingomyelinase knockout mice. Journal of Neurochemistry, 2011, 116, 779-788.	3.9	61
74	The Fourth ISN Special Neurochemistry Conference -"Membrane domains in CNS Physiology and Pathologyâ€, Erice, Trapani, Sicily, 22-26 May 2010. Journal of Neurochemistry, 2011, 116, 669-670.	3.9	1
75	Gangliosides and the multiscale modulation of membrane structure. Chemistry and Physics of Lipids, 2011, 164, 796-810.	3.2	47
76	Remodeling of Sphingolipids by Plasma Membrane Associated Enzymes. Neurochemical Research, 2011, 36, 1636-1644.	3.3	32
77	Secondary Alterations of Sphingolipid Metabolism in Lysosomal Storage Diseases. Neurochemical Research, 2011, 36, 1654-1668.	3.3	31
78	A Glycosphingolipid/Caveolin-1 Signaling Complex Inhibits Motility of Human Ovarian Carcinoma Cells. Journal of Biological Chemistry, 2011, 286, 40900-40910.	3.4	31
79	Role of Gangliosides and Plasma Membrane-Associated Sialidase in the Process of Cell Membrane Organization. Advances in Experimental Medicine and Biology, 2011, 705, 297-316.	1.6	10
80	Deregulated Sphingolipid Metabolism and Membrane Organization in Neurodegenerative Disorders. Molecular Neurobiology, 2010, 41, 314-340.	4.0	117
81	Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membraneâ€associated glycohydrolases. FEBS Letters, 2010, 584, 1914-1922.	2.8	40
82	Frontiers in membrane biochemistry. FEBS Letters, 2010, 584, 1633-1633.	2.8	0
83	Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide. Biomaterials, 2010, 31, 6519-6529.	11.4	190
84	Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nature Medicine, 2010, 16, 98-105.	30.7	275
85	Lipids and Membrane Lateral Organization. Frontiers in Physiology, 2010, 1, 153.	2.8	41
86	GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology, 2010, 20, 62-77.	2.5	47
87	Photoactivable sphingosine as a tool to study membrane microenvironments in cultured cells. Journal of Lipid Research, 2010, 51, 798-808.	4.2	10
88	Sphingolipidomics of A2780 human ovarian carcinoma cells treated with synthetic retinoids. Journal of Lipid Research, 2010, 51, 1832-1840.	4.2	23
89	Sphingosine Kinase Mediates Resistance to the Synthetic Retinoid N-(4-Hydroxyphenyl)retinamide in Human Ovarian Cancer Cells. Journal of Biological Chemistry, 2010, 285, 18594-18602.	3.4	43
90	Gangliosides as Regulators of Cell Membrane Organization and Functions. Advances in Experimental Medicine and Biology, 2010, 688, 165-184.	1.6	49

#	Article	IF	CITATIONS
91	Sphingolipids and membrane environments for caveolin. FEBS Letters, 2009, 583, 597-606.	2.8	53
92	Activity of plasma membrane βâ€galactosidase and βâ€glucosidase. FEBS Letters, 2009, 583, 2469-2473.	2.8	51
93	Thin layer chromatography of gangliosides. Glycoconjugate Journal, 2009, 26, 961-973.	2.7	32
94	Brain lipid composition in grey-lethal mutant mouse characterized by severe malignant osteopetrosis. Glycoconjugate Journal, 2009, 26, 623-633.	2.7	17
95	Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconjugate Journal, 2009, 26, 615-621.	2.7	49
96	Neural precursor cell cultures from GM2 gangliosidosis animal models recapitulate the biochemical and molecular hallmarks of the brain pathology. Journal of Neurochemistry, 2009, 109, 135-147.	3.9	38
97	Alterations of myelinâ€specific proteins and sphingolipids characterize the brains of acid sphingomyelinaseâ€deficient mice, an animal model of Niemann–Pick disease type A. Journal of Neurochemistry, 2009, 109, 105-115.	3.9	30
98	Glycosphingolipid behaviour in complex membranes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 184-193.	2.6	128
99	Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconjugate Journal, 2008, 25, 357-374.	2.7	101
100	Lipid content of brain, brain membrane lipid domains, and neurons from acid sphingomyelinase deficient mice. Journal of Neurochemistry, 2008, 107, 329-338.	3.9	53
101	Regulation of tumor phenotypes by caveolin-1 and sphingolipid-controlled membrane signaling complexes. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 585-596.	2.4	15
102	Effect of structural modifications of ganglioside GM2 on intra-molecular carbohydrate-to-carbohydrate interaction and enzymatic susceptibility. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 353-361.	2.4	3
103	uPA binding increases UPAR localization to lipid rafts and modifies the receptor microdomain composition. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 250-259.	2.6	21
104	Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. Journal of Leukocyte Biology, 2008, 83, 728-741.	3.3	83
105	Selected natural and synthetic retinoids impair CCR7- and CXCR4-dependent cell migration in vitro and in vivo. Journal of Leukocyte Biology, 2008, 84, 871-879.	3.3	23
106	Membrane lipid domains and membrane lipid domain preparations: are they the same thing?. Trends in Glycoscience and Glycotechnology, 2008, 20, 315-340.	0.1	11
107	Solid phase immunoadsorption for therapeutic and analytical studies on neuropathy-associated anti-GM1 antibodies. Glycobiology, 2007, 17, 294-303.	2.5	38
108	Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13678-13683.	7.1	344

#	Article	IF	CITATIONS
109	Ceramide and sphingomyelin species of fibroblasts and neurons in culture. Journal of Lipid Research, 2007, 48, 417-424.	4.2	57
110	Nitric Oxide Boosts Chemoimmunotherapy via Inhibition of Acid Sphingomyelinase in a Mouse Model of Melanoma. Cancer Research, 2007, 67, 7559-7564.	0.9	63
111	<i>N</i> -Glycolyl GM1 Ganglioside as a Receptor for Simian Virus 40. Journal of Virology, 2007, 81, 12846-12858.	3.4	150
112	Gangliosides as components of lipid membrane domains. Glycobiology, 2007, 17, 1R-13R.	2.5	296
113	Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. Journal of Neurochemistry, 2007, 100, 708-719.	3.9	37
114	Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. Journal of Neurochemistry, 2007, 103, 113-125.	3.9	30
115	Reorganization of prion protein membrane environment during low potassium-induced apoptosis in primary rat cerebellar neurons. Journal of Neurochemistry, 2007, 103, 1954-1967.	3.9	13
116	Sialic Acid and GM3 Ganglioside Expression in Papillomavirus-associated Urinary Bladder Tumours of Cattle with Chronic Enzootic Haematuria. Journal of Comparative Pathology, 2007, 137, 87-93.	0.4	10
117	Dynamic and Structural Properties of Sphingolipids as Driving Forces for the Formation of Membrane Domains. Chemical Reviews, 2006, 106, 2111-2125.	47.7	167
118	Analysis of detergent-resistant membranes associated with apical and basolateral GPI-anchored proteins in polarized epithelial cells. FEBS Letters, 2006, 580, 5705-5712.	2.8	19
119	Lack of ceramide generation and altered sphingolipid composition are associated with drug resistance in human ovarian carcinoma cells. Biochemical Journal, 2006, 395, 311-318.	3.7	41
120	Efflux of sphingolipids metabolically labeled with [1-3H]sphingosine, L-[3-3H]serine and [9,10-3H]palmitic acid from normal cells in culture. Glycoconjugate Journal, 2006, 23, 159-165.	2.7	17
121	Saposin B binds and transfers phospholipids. Journal of Lipid Research, 2006, 47, 1045-1053.	4.2	30
122	Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB Journal, 2006, 20, 1227-1229.	0.5	106
123	The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. Journal of Neurochemistry, 2005, 95, 771-783.	3.9	48
124	Bicistronic lentiviral vector corrects β-hexosaminidase deficiency in transduced and cross-corrected human Sandhoff fibroblasts. Neurobiology of Disease, 2005, 20, 583-593.	4.4	32
125	Sphingolipid Uptake by Cultured Cells. Journal of Biological Chemistry, 2005, 280, 2668-2675.	3.4	45
126	Identification of plasma membrane associated mature β-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Letters, 2005, 579, 5501-5506.	2.8	45

#	Article	IF	CITATIONS
127	The Plasma Membrane-associated Sialidase MmNEU3 Modifies the Ganglioside Pattern of Adjacent Cells Supporting Its Involvement in Cell-to-Cell Interactions. Journal of Biological Chemistry, 2004, 279, 16989-16995.	3.4	130
128	Association of rat8 with Fyn protein kinase via lipid rafts is required for rat mammary cell differentiationin vitro. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1880-1885.	7.1	24
129	Interactions between gangliosides and proteins in the exoplasmic leaflet of neuronal plasma membranes: A study performed with a tritium-labeled GM1 derivative containing a photoactivable group linked to the oligosaccharide chain. Glycoconjugate Journal, 2004, 21, 461-470.	2.7	24
130	Identification of the Fenretinide Metabolite 4-Oxo-Fenretinide Present in Human Plasma and Formed in Human Ovarian Carcinoma Cells through Induction of Cytochrome P450 26A1. Clinical Cancer Research, 2004, 10, 6265-6275.	7.0	37
131	Synthesis of radioactive and photoactivable ganglioside derivatives for the study of ganglioside-protein interactions. Glycoconjugate Journal, 2003, 20, 11-23.	2.7	26
132	The adhesion protein TAGâ€1 has a ganglioside environment in the sphingolipidâ€enriched membrane domains of neuronal cells in culture. Journal of Neurochemistry, 2003, 85, 224-233.	3.9	42
133	Procedure for separation of GM2 ganglioside species with different ceramide structures by a flash reversed-phase silica gel liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 796, 1-10.	2.3	4
134	Dynamics of membrane lipid domains in neuronal cells differentiated in culture. Journal of Lipid Research, 2003, 44, 2142-2151.	4.2	72
135	Altered Sphingolipid Metabolism inN-(4-Hydroxyphenyl)- retinamide-resistant A2780 Human Ovarian Carcinoma Cells. Journal of Biological Chemistry, 2003, 278, 5574-5583.	3.4	62
136	Structural Basis for the Enzymatic Resistance of the GM2 Ganglioside. Methods in Enzymology, 2003, 363, 242-264.	1.0	2
137	Absence of Metabolic Cross-correction in Tay-Sachs Cells. Journal of Biological Chemistry, 2002, 277, 20177-20184.	3.4	32
138	Preparation and Use of Liposomes for the Study of Sphingolipid Segregation in Membrane Model Systems. , 2002, 199, 17-28.		8
139	Interaction of Human Substantia Nigra Neuromelanin with Lipids and Peptides. Journal of Neurochemistry, 2002, 74, 1758-1765.	3.9	91
140	Changes of Free Long-Chain Bases in Neuronal Cells During Differentiation and Aging in Culture. Journal of Neurochemistry, 2002, 67, 1866-1871.	3.9	15
141	Sphingolipid metabolism and caveolin expression in gonadotropin-releasing hormone-expressing GN11 and gonadotropin-releasing hormone-secreting GT1-7 neuronal cells. Neurochemical Research, 2002, 27, 831-840.	3.3	27
142	Mimicking gangliosides by design: mimics of GM1 headgroup. Neurochemical Research, 2002, 27, 539-545.	3.3	23
143	Restoration of the GM2 ganglioside metabolism in bone marrow-derived stromal cells from Tay-Sachs disease animal model. Neurochemical Research, 2002, 27, 793-800.	3.3	31
144	Structure of the main ganglioside from the brain of Xenopus laevis. Glycoconjugate Journal, 2002, 19, 53-57.	2.7	4

#	Article	IF	CITATIONS
145	Changes of the ganglioside pattern and content in human fibroblasts by high density cell population subculture progression. Glycoconjugate Journal, 2002, 19, 181-186.	2.7	6
146	GM3 Ganglioside Inhibits CD9-Facilitated Haptotactic Cell Motility:Â Coexpression of GM3 and CD9 Is Essential in the Downregulation of Tumor Cell Motility and Malignancyâ€. Biochemistry, 2001, 40, 6414-6421.	2.5	140
147	Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule TAG-1 by anti-GD3 ganglioside monoclonal antibody. Journal of Neurochemistry, 2001, 78, 1162-1167.	3.9	73
148	Exogenous Sphingosine Enters Xenopus Laevis Embryos Grown in Petri Dishes and It Is Metabolized. Bioscience Reports, 2001, 21, 719-731.	2.4	2
149	Changes in the Lipid Turnover, Composition, and Organization, as Sphingolipid-enriched Membrane Domains, in Rat Cerebellar Granule Cells Developing in Vitro. Journal of Biological Chemistry, 2001, 276, 21136-21145.	3.4	163
150	Preparation of deacetyl-, lyso-, and deacetyl-lyso-GM3 by selective alkaline hydrolysis of GM3 ganglioside. Journal of Lipid Research, 2001, 42, 1318-1324.	4.2	13
151	Role of Glycosphingolipids in Formation and Function of Membrane Microdomains. Trends in Glycoscience and Glycotechnology, 2001, 13, 239-250.	0.1	8
152	Use of Nuclear Magnetic Resonance Spectroscopy in Evaluation of Ganglioside Structure, Conformation, and Dynamics. Methods in Enzymology, 2000, 312, 247-272.	1.0	22
153	[50] Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods in Enzymology, 2000, 311, 639-656.	1.0	31
154	Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. FEBS Journal, 2000, 267, 4187-4197.	0.2	76
155	Second generation mimics of ganglioside GM1 as artificial receptors for cholera toxin: replacement of the sialic acid moiety. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2197-2200.	2.2	30
156	Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. BBA - Biomembranes, 2000, 1469, 63-77.	8.0	144
157	Modeling ganglioside headgroups by conformational analysis and molecular dynamics. Glycoconjugate Journal, 2000, 17, 283-299.	2.7	39
158	New approaches to the study of sphingolipid enriched membrane domains: the use of electron microscopic autoradiography to reveal metabolically tritium labeled sphingolipids in cell cultures. Glycoconjugate Journal, 2000, 17, 261-268.	2.7	5
159	Association of Src-family protein tyrosine kinases with sphingolipids in rat cerebellar granule cells differentiated in culture. Glycoconjugate Journal, 2000, 17, 223-232.	2.7	46
160	Glycosphingolipids and membrane domains. Glycoconjugate Journal, 2000, 17, 141-141.	2.7	0
161	Sphingolipid-enriched Membrane Domains from Rat Cerebellar Granule Cells Differentiated in Culture. Journal of Biological Chemistry, 2000, 275, 11658-11665.	3.4	151
162	The αβ T Cell Response to Self-Glycolipids Shows a Novel Mechanism of CD1b Loading and a Requirement for Complex Oligosaccharides. Immunity, 2000, 13, 255-264.	14.3	144

#	Article	IF	CITATIONS
163	Linalool modifies the nicotinic receptor–ion channel kinetics at the mouse neuromuscular junction. Pharmacological Research, 2000, 42, 177-181.	7.1	142
164	Structural Basis for the Resistance of Tay-Sachs Ganglioside GM2 to Enzymatic Degradation. Journal of Biological Chemistry, 1999, 274, 10014-10018.	3.4	33
165	Ceramide Glycanase Activities in Human Cancer Cells. Bioscience Reports, 1999, 19, 449-460.	2.4	10
166	The Structural Basis for the Susceptibility of Gangliosides to Enzymatic Degradation. Bioscience Reports, 1999, 19, 163-168.	2.4	2
167	A procedure for the preparation of GM3 ganglioside from GM1-lactone. Glycoconjugate Journal, 1999, 16, 197-203.	2.7	22
168	Thermal Hysteresis in Ganglioside Micelles Investigated by Differential Scanning Calorimetry and Light-Scattering. Langmuir, 1999, 15, 4975-4980.	3.5	35
169	Sugar Mimics:Â An Artificial Receptor for Cholera Toxin. Journal of the American Chemical Society, 1999, 121, 2032-2036.	13.7	52
170	β-Galactosidase deficiency in a Korat cat: a new form of feline G M1 -gangliosidosis. Acta Neuropathologica, 1998, 96, 307-314.	7.7	38
171	Conformation of the Oligosaccharide Chain of GM1 Ganglioside in a Carbohydrate-Enriched Surface. Biophysical Journal, 1998, 74, 309-318.	0.5	74
172	Spatial activity and habitat use of crested porcupine, <i>Hystrix cristata </i> L., 1758 (Rodentia,) Tj ETQq0 0 0 rgl	3T /Overlo 0.7	ck 10 Tf 50 3
173	Dynamics and Spatial Organization of Surface Gangliosides Trends in Glycoscience and Glycotechnology, 1997, 9, 433-445.	0.1	25
174	Metabolic Processing of Gangliosides by Human Fibroblasts in Culture - Formation and Recycling of Separate Pools of Sphingosine. FEBS Journal, 1997, 250, 661-669.	0.2	42
175	Age-related changes of the ganglioside long-chain base composition in rat cerebellum. Neurochemistry International, 1996, 28, 183-187.	3.8	18
176	Experimental evidence of a temperature-related conformational change of the hydrophilic portion of gangliosides. Chemistry and Physics of Lipids, 1996, 79, 137-145.	3.2	38
177	Characterization of biotinylated liposomes sensitive to temperature and pH: new tools for anti-cancer drug delivery. Chemistry and Physics of Lipids, 1996, 82, 133-139.	3.2	5
178	Nuclear Overhauser effect investigation on GM1 ganglioside containingN-glycolyl-neuraminic acid (II3Neu5GcGgOse4Cer). Glycoconjugate Journal, 1996, 13, 57-62.	2.7	22
179	Evaluation of the efficiency of an assay procedure for gangliosides in human serum. Glycoconjugate Journal, 1996, 13, 347-352.	2.7	19
180	Metabolic Processing of Gangliosides by Normal and Salla Human Fibroblasts in Culture. Journal of Biological Chemistry, 1996, 271, 21738-21744.	3.4	37

#	Article	lF	CITATIONS
181	Characterization of an Alternatively Spliced GM2 Activator Protein, GM2A Protein. Journal of Biological Chemistry, 1996, 271, 10611-10615.	3.4	13
182	Preparation of rediolabeled gangliosides. Glycobiology, 1996, 6, 479-487.	2.5	45
183	Isolation and Structural Characterization of N-Acetyl- and N-Glycolylneuraminic-Acid-Containing GalNAc-GD1a Isomers, IV4GalNAcIV3Neu5AcII3Neu5GcGgOse4Cer and IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer, from Bovine Brain. FEBS Journal, 1995, 234, 786-793.	0.2	13
184	Aggregation properties of semisynthetic GD1a ganglioside (IV3Neu5ACII3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chemistry and Physics of Lipids, 1995, 77, 41-49.	3.2	17
185	Spontaneous transfer of GM3 ganglioside between vesicles. Chemistry and Physics of Lipids, 1995, 77, 253-260.	3.2	11
186	The anti-oligosaccharide antibodies present in sera from patients with motor neuron disease and neuropathy recognize theN-glycolylneuraminic acid containing gangliotetrahexosyl oligosaccharide. Glycoconjugate Journal, 1995, 12, 729-731.	2.7	3
187	Synthesis of N-thioacetyl gangliosides GM1 and GM3. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 2805-2808.	2.2	Ο
188	Specific Recognition of N-Acetylneuraminic Acid in the GM2 Epitope by Human GM2 Activator Protein. Journal of Biological Chemistry, 1995, 270, 24246-24251.	3.4	20
189	Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1235, 221-230.	2.6	41
190	A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Letters, 1995, 375, 11-14.	2.8	169
191	Aggregative properties of gangliosides in solution. Chemistry and Physics of Lipids, 1994, 71, 21-45.	3.2	151
192	Synthesis and aggregative properties of GM1 ganglioside (IV3Neu5AcGgOse4Cer) containing d-(+)-2-hydroxystearic acid. Chemistry and Physics of Lipids, 1994, 69, 95-104.	3.2	13
193	Characterization of a complex mixture of ceramides by fast atom bombardment and precursor and fragment analysis tandem mass spectrometry. Biological Mass Spectrometry, 1994, 23, 82-90.	0.5	17
194	Geometrical and Conformational Properties of Ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. FEBS Journal, 1994, 225, 271-288.	0.2	62
195	Biosynthesis of gangliosides containing C18:1 and C20:1 [3-14C]sphingosine after administrating [1-14C]palmitic acid and [1-14C]stearic acid to rat cerebellar granule cells in culture. FEBS Journal, 1994, 221, 1095-1101.	0.2	16
196	Carbohydrate dynamics at a micellar surface: GD1a headgroup transformations revealed by NMR spectroscopy. Biophysical Journal, 1994, 66, 1642-1652.	0.5	81
197	1H-NMR study on ganglioside amide protons: evidence that the deuterium exchange kinetics are affected by the preparation of samples. Glycoconjugate Journal, 1993, 10, 441-446.	2.7	17
198	S11.10 Biosynthesis of ganglioside molecular species containing C18 or C20 long chain base. Glycoconjugate Journal, 1993, 10, 294-295.	2.7	0

#	Article	IF	CITATIONS
199	S19.27 Characterization of ceramides by fast atom bombardment and tandem mass spectrometry of cationized species at high and low collision energy. Glycoconjugate Journal, 1993, 10, 341-341.	2.7	0
200	Changes in the Ganglioside Long-Chain Base Composition of Rat Cerebellar Granule Cells During Differentiation and Aging in Culture. Journal of Neurochemistry, 1993, 60, 193-196.	3.9	34
201	Aggregation properties of gangliosides : influence of the primary and secondary structure of the headgroup. European Physical Journal Special Topics, 1993, 03, C1-57-C1-64.	0.2	1
202	Specific ganglioside-cell protein interactions: A study performed with GM1 ganglioside derivative containing photoactivable azide and rat cerebellar granule cells in culture. Neurochemistry International, 1992, 20, 315-321.	3.8	31
203	Formation of free sphingosine and ceramide from exogenous ganglioside GM1 by cerebellar granule cells in culture. FEBS Letters, 1992, 300, 188-192.	2.8	51
204	The role of the ganglioside lipid moiety in the process of ganglioside-cell interactions. Chemistry and Physics of Lipids, 1992, 62, 1-9.	3.2	12
205	Changes of the human liver GM3 ganglioside molecular species during aging. FEBS Journal, 1992, 203, 107-113.	0.2	29
206	Rat cerebellar granule cells in culture associate and metabolize differently exogenous GM1 ganglioside molecular species containing a C18 or C20 long chain base. Chemistry and Physics of Lipids, 1992, 60, 247-252.	3.2	18
207	Characterization of sphingosine long-chain bases by fast atom bombardment and high-energy collision-induced decomposition tandem mass spectrometry. Organic Mass Spectrometry, 1992, 27, 1357-1364.	1.3	7
208	Interaction of gangliosides with the methyltransferase-I of microsomes from normal and neoplastic human mammary gland. International Journal of Cancer, 1992, 52, 738-742.	5.1	1
209	Lack of the Ganglioside Molecular Species Containing the C20-Long-Chain Bases in Human, Rat, Mouse, Rabbit, Cat, Dog, and Chicken Brains During Prenatal Life. Journal of Neurochemistry, 1991, 56, 2048-2050.	3.9	32
210	Exogenous Gangliosides GD1b and GD1b-Lactone, Stably Associated to Rat Brain P2Subcellular Fraction, Modulate Differently the Process of Protein Phosphorylation. Journal of Neurochemistry, 1991, 57, 1207-1211.	3.9	40
211	Three dimensional structure of GD1b and GD1b-monolactone gangliosides in dimethylsulphoxide: a nuclear Overhauser effect investigation supported by molecular dynamics calculations. Chemistry and Physics of Lipids, 1991, 59, 107-125.	3.2	55
212	Aggregation properties of GD1b, II3Neu5Ac2GgOse4Cer, and of GD1b-lactone, II3[α-Neu5Ac-(2→8,) Tj ETQq0 () 0 ₃ rgBT /C	Overlock 10 Tr
213	Further Studies on the Changes of Chicken Brain Gangliosides During Prenatal and Postnatal Life. Journal of Neurochemistry, 1990, 54, 1653-1660.	3.9	23
214	Changes in the Ceramide Composition of Rat Forebrain Gangliosides with Age. Journal of Neurochemistry, 1990, 54, 230-235.	3.9	72
215	Three-dimensional structure of the oligosaccharide chain of GM1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water-dodecylphosphocholine solutions, lournal of the American Chemical Society, 1990, 112, 7772-7778.	13.7	158
216	Evidence for spontaneous segregation phenomena in mixed micelles of gangliosides. Chemistry and	3.2	40

phenomena in mixed micelles of gangliosides. Chemistry and Evidence for spontaneous segregatio Physics of Lipids, 1990, 55, 223-229. 216 3.2

#	Article	IF	CITATIONS
217	Motor neuron disease in a patient with a monoclonal IgMk directed against GM1, GD1b, and high-molecular-weight neural-specific glycoproteins. Annals of Neurology, 1990, 28, 190-194.	5.3	56
218	Aggregation properties of semisynthetic GM1 ganglioside (II3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chemistry and Physics of Lipids, 1990, 56, 49-57.	3.2	35
219	Aggregation properties of GM3 ganglioside (II3Neu5AcLacCer) in aqueous solutions. Chemistry and Physics of Lipids, 1990, 52, 231-241.	3.2	55
220	Formation of tritium-labeled polysialylated gangliosides in the cytosol of rat cerebellar granule cells in culture following administration of [3H]GM1 ganglioside. FEBS Letters, 1990, 277, 164-166.	2.8	4
221	Formation of a cytosolic ganglioside-protein complex following administration of photoreactive ganglioside GM1 to human fibroblasts in culture. FEBS Letters, 1990, 263, 329-331.	2.8	40
222	Further studies on the gangliosidic nature of the cholinergic-specific antigen, Chol-1. Archives of Biochemistry and Biophysics, 1990, 280, 211-216.	3.0	16
223	Synthesis, structure, and conformation of the dilactone derivative of Gd1b ganglioside. Carbohydrate Research, 1989, 195, 51-58.	2.3	12
224	Lactonization of GD1b ganglioside under acidic conditions. Carbohydrate Research, 1989, 193, 141-146.	2.3	35
225	A photoreactive derivative of radiolabeled GM1 ganglioside: preparation and use to establish the involvement of specific proteins in GM1 uptake by human fibroblasts in culture. Biochemistry, 1989, 28, 77-84.	2.5	89
226	Synthesis and structural characterization of the dilactone derivative of GD1a ganglioside. Carbohydrate Research, 1988, 182, 31-40.	2.3	20
227	Semisynthetic preparation of N-glycolylneuraminic acid containing GM1 ganglioside: chemical characterization, physico-chemical properties and some biochemical features. Chemistry and Physics of Lipids, 1988, 46, 181-191.	3.2	14
228	The Antitumor Monoclonal Antibody MOv2 Recognizes the Lewis A Hapten. Hybridoma, 1988, 7, 129-139.	0.6	7
229	New Trends in Ganglioside Chemistry. Advances in Experimental Medicine and Biology, 1988, 228, 437-464.	1.6	3
230	Ganglioside lactones:1H-NMR determination of the inner ester position of GD1b-ganglioside lactone naturally occurring in human brain or produced by chemical synthesis. Glycoconjugate Journal, 1987, 4, 119-127.	2.7	30
231	Carbohydrate Epitope Defined by an Antitumor Monoclonal Antibody Detected on Glycoproteins and a Glycolipid by Immunoblotting. Hybridoma, 1986, 5, 289-296.	0.6	15
232	Light scattering measurements on gangliosides: Dependence of micellar properties on molecular structure and temperature. Chemistry and Physics of Lipids, 1986, 41, 315-328.	3.2	70
233	New chemical trends in ganglioside research. Chemistry and Physics of Lipids, 1986, 42, 3-26.	3.2	42
234	A new chemical procedure for the preparation of gangliosides carrying fluorescent or paramagnetic probes on the lipid moiety. Chemistry and Physics of Lipids, 1986, 40, 71-86.	3.2	43

#	Article	IF	CITATIONS
235	A radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in cultured human fibroblasts. Analytical Biochemistry, 1986, 153, 283-294.	2.4	47
236	Advances in Ganglioside Chemistry. , 1986, , 17-46.		1
237	Association of gangliosides to fibroblasts in culture: A study performed with GM1 [14C]-labelled at the sialic acid acetyl group. Glycoconjugate Journal, 1985, 2, 279-291.	2.7	66
238	Normal-phase high-performance liquid chromatographic separation of non-derivatized ganglioside mixtures. Journal of Chromatography A, 1985, 348, 371-378.	3.7	92
239	Laser-light scattering study of size and stability of ganglioside-phospholipid small unilamellar vesicles. Chemistry and Physics of Lipids, 1985, 37, 83-97.	3.2	22
240	Analysis of gangliosides using fast atom bombardment mass spectrometry. Chemistry and Physics of Lipids, 1985, 37, 127-141.	3.2	74
241	Synthesis of GM1-Ganglioside Inner Ester. Glycoconjugate Journal, 1985, 2, 343-354.	2.7	33
242	Characterization of two molecular species GD3 ganglioside from bovine buttermilk. Lipids and Lipid Metabolism, 1985, 833, 303-307.	2.6	29
243	Promotion of Neuritogenesis in Mouse Neuroblastoma Cells by Exogenous Gangliosides. Relationship Between the Effect and the Cell Association of Ganglioside GM1. Journal of Neurochemistry, 1984, 42, 299-305.	3.9	205
244	Separation of ganglioside molecular species, with homogeneous long-chain base composition, by reversed-phase thin-layer chromatography. Journal of Chromatography A, 1984, 315, 395-400.	3.7	10
245	Preparation of the tritiated molecular forms of gangliosides with homogeneous long chain base composition. Glycoconjugate Journal, 1984, 1, 111-121.	2.7	29
246	Nervous system ganglioside composition of normothermic and hibernating dormice (Glis glis). Neurochemistry International, 1984, 6, 677-683.	3.8	14
247	Interaction of cholera toxin with gangliosides: differential effects of the oligosaccharide of ganglioside GM1 and of micellar gangliosides. Biochemistry, 1984, 23, 2520-2526.	2.5	13
248	Changes in rabbit cerebrum and cerebellum gangliosides during postnatal life. A study especially referring to alkali labile gangliosides. Neurochemistry International, 1984, 6, 191-197.	3.8	13
249	Ganglioside Pattern of Normal Human Brain, from Samples Obtained at Surgery. A Study Especially Referred to Alkali Labile Species. Journal of Biochemistry, 1984, 96, 1943-1946.	1.7	19
250	Recognition by two-dimensional thin-layer chromatography and densitometric quantification of alkali-labile gangliosides from the brain of different animals. Analytical Biochemistry, 1983, 128, 104-114.	2.4	118
251	Mixed micelles of GM1 ganglioside and a nonionic amphiphile. The Journal of Physical Chemistry, 1982, 86, 2533-2537.	2.9	27
252	Galactose oxidase action on GM1 ganglioside in micellar and vesicular dispersions. Biochimica Et Biophysica Acta - Biomembranes, 1982, 688, 333-340.	2.6	24

#	Article	IF	CITATIONS
253	Interactions of ganglioside GM1 with human and fetal calf sera. Formation of ganglioside-serum albumin complexes. Biochimica Et Biophysica Acta - Biomembranes, 1982, 692, 18-26.	2.6	40
254	Micellar Properties of Gangliosides. , 1982, , 573-594.		3
255	Electron paramagnetic resonance studies on the fluidity and surface dynamics of egg phosphatidylcholine vesicles containing gangliosides. Biochimica Et Biophysica Acta - Biomembranes, 1981, 647, 196-202.	2.6	107
256	Activation of (Na+, K+)-ATPase by Nanomolar Concentrations of GM1Ganglioside. Journal of Neurochemistry, 1981, 37, 350-357.	3.9	222
257	Changes in Rabbit Brain Cytosolic and Membrane-Bound Gangliosides During Prenatal Life. Journal of Neurochemistry, 1981, 36, 227-232.	3.9	54
258	Light Scattering Study of Ganglioside Micelles and Mixed Micelles with a Nonionic Amphiphile. , 1981, , 337-349.		0
259	Interaction of GM1 Ganglioside with Bovine Serum Albumin Formation and Isolation of Multiple Complexes. FEBS Journal, 1980, 111, 315-324.	0.2	58
260	GM1 ganglioside-triton X-100 mixed micelles Transitions among different micellar species monitored by physicochemical and enzymatic methods. Biochimica Et Biophysica Acta - Biomembranes, 1980, 601, 282-288.	2.6	7
261	CYTOSOLIC GANGLIOSIDES: OCCURRENCE IN CALF BRAIN AS GANGLIOSIDE-PROTEIN COMPLEXES. Journal of Neurochemistry, 1979, 33, 117-121.	3.9	70