Jacques I Wadiche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523490/publications.pdf

Version: 2024-02-01

304743 434195 3,360 31 22 citations h-index papers

g-index 36 36 36 3057 docs citations times ranked citing authors all docs

31

#	Article	IF	CITATIONS
1	Climbing Fiber-Mediated Spillover Transmission to Interneurons Is Regulated by EAAT4. Journal of Neuroscience, 2021, 41, 8126-8133.	3.6	6
2	Parvalbumin interneurons provide spillover to newborn and mature dentate granule cells. ELife, 2020, 9, .	6.0	18
3	NeuroD2 controls inhibitory circuit formation in the molecular layer of the cerebellum. Scientific Reports, 2019, 9, 1448.	3.3	20
4	The readily-releasable pool dynamically regulates multivesicular release. ELife, 2019, 8, .	6.0	34
5	Constitutive and Synaptic Activation of GIRK Channels Differentiates Mature and Newborn Dentate Granule Cells. Journal of Neuroscience, 2018, 38, 6513-6526.	3.6	35
6	Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity. ELife, 2017, 6, .	6.0	21
7	Adult-born neurons modify excitatory synaptic transmission to existing neurons. ELife, 2017, 6, .	6.0	70
8	Low excitatory innervation balances high intrinsic excitability of immature dentate neurons. Nature Communications, 2016, 7, 11313.	12.8	83
9	Porcupine Controls Hippocampal AMPAR Levels, Composition, and Synaptic Transmission. Cell Reports, 2016, 14, 782-794.	6.4	48
10	New Neurons Don't Talk Back. Neuron, 2015, 85, 3-5.	8.1	2
10	New Neurons Don't Talk Back. Neuron, 2015, 85, 3-5. The ubiquitous nature of multivesicular release. Trends in Neurosciences, 2015, 38, 428-438.	8.1	2 94
11	The ubiquitous nature of multivesicular release. Trends in Neurosciences, 2015, 38, 428-438. Hilar Mossy Cells Provide the First Glutamatergic Synapses to Adult-Born Dentate Granule Cells.	8.6	94
11 12	The ubiquitous nature of multivesicular release. Trends in Neurosciences, 2015, 38, 428-438. Hilar Mossy Cells Provide the First Glutamatergic Synapses to Adult-Born Dentate Granule Cells. Journal of Neuroscience, 2014, 34, 2349-2354.	8.6 3.6	94 87
11 12 13	The ubiquitous nature of multivesicular release. Trends in Neurosciences, 2015, 38, 428-438. Hilar Mossy Cells Provide the First Glutamatergic Synapses to Adult-Born Dentate Granule Cells. Journal of Neuroscience, 2014, 34, 2349-2354. Good Housekeeping. Neuron, 2014, 81, 715-717. The Contribution of Extrasynaptic Signaling to Cerebellar Information Processing. Cerebellum, 2014,	8.6 3.6 8.1	94 87
11 12 13	The ubiquitous nature of multivesicular release. Trends in Neurosciences, 2015, 38, 428-438. Hilar Mossy Cells Provide the First Glutamatergic Synapses to Adult-Born Dentate Granule Cells. Journal of Neuroscience, 2014, 34, 2349-2354. Good Housekeeping. Neuron, 2014, 81, 715-717. The Contribution of Extrasynaptic Signaling to Cerebellar Information Processing. Cerebellum, 2014, 13, 513-520. Distinct Determinants of Sparse Activation during Granule Cell Maturation. Journal of Neuroscience,	8.6 3.6 8.1 2.5	94 87 1 8
11 12 13 14	The ubiquitous nature of multivesicular release. Trends in Neurosciences, 2015, 38, 428-438. Hilar Mossy Cells Provide the First Glutamatergic Synapses to Adult-Born Dentate Granule Cells. Journal of Neuroscience, 2014, 34, 2349-2354. Good Housekeeping. Neuron, 2014, 81, 715-717. The Contribution of Extrasynaptic Signaling to Cerebellar Information Processing. Cerebellum, 2014, 13, 513-520. Distinct Determinants of Sparse Activation during Granule Cell Maturation. Journal of Neuroscience, 2013, 33, 19131-19142. GABA Depolarization Is Required for Experience-Dependent Synapse Unsilencing in Adult-Born	8.6 3.6 8.1 2.5	94 87 1 8

#	Article	IF	Citations
19	Desynchronization of Multivesicular Release Enhances Purkinje Cell Output. Neuron, 2011, 70, 991-1004.	8.1	39
20	Enhanced Integration of Newborn Neurons after Neonatal Insults. Frontiers in Neuroscience, 2011, 5, 45.	2.8	18
21	lvy/neurogliaform interneurons coordinate activity in the neurogenic niche. Nature Neuroscience, 2011, 14, 1407-1409.	14.8	76
22	Input-Specific GABAergic Signaling to Newborn Neurons in Adult Dentate Gyrus. Journal of Neuroscience, 2009, 29, 15063-15072.	3.6	77
23	Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nature Reviews Neuroscience, 2007, 8, 935-947.	10.2	450
24	Long-distance signaling via presynaptic glutamate transporters. Nature Neuroscience, 2006, 9, 1352-1353.	14.8	4
25	Intrinsic kinetics determine the time course of neuronal synaptic transporter currents. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1083-1087.	7.1	29
26	Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nature Neuroscience, 2005, 8, 1329-1334.	14.8	190
27	Retroinhibition of Presynaptic Ca2+ Currents by Endocannabinoids Released via Postsynaptic mGluR Activation at a Calyx Synapse. Journal of Neuroscience, 2004, 24, 5955-5965.	3.6	104
28	Multivesicular Release at Climbing Fiber-Purkinje Cell Synapses. Neuron, 2001, 32, 301-313.	8.1	338
29	Macroscopic and Microscopic Properties of a Cloned Glutamate Transporter/Chloride Channel. Journal of Neuroscience, 1998, 18, 7650-7661.	3.6	261
30	Ion fluxes associated with excitatory amino acid transport. Neuron, 1995, 15, 721-728.	8.1	530
31	Kinetics of a human glutamate transporter. Neuron, 1995, 14, 1019-1027.	8.1	394