
Geoffrey Schoenbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anterior cingulate neurons signal neutral cue pairings during sensory preconditioning. Current Biology, 2022, 32, 725-732.e3.	3.9	5
2	Minimal cross-trial generalization in learning the representation of an odor-guided choice task. PLoS Computational Biology, 2022, 18, e1009897.	3.2	2
3	Leveraging Basic Science for the Clinic—From Bench to Bedside. JAMA Psychiatry, 2021, 78, 331.	11.0	7
4	Prior Cocaine Use Alters the Normal Evolution of Information Coding in Striatal Ensembles during Value-Guided Decision-Making. Journal of Neuroscience, 2021, 41, 342-353.	3.6	10
5	Evolving schema representations in orbitofrontal ensembles during learning. Nature, 2021, 590, 606-611.	27.8	66
6	Orbitofrontal State Representations Are Related to Choice Adaptations and Reward Predictions. Journal of Neuroscience, 2021, 41, 1941-1951.	3.6	10
7	Past experience shapes the neural circuits recruited for future learning. Nature Neuroscience, 2021, 24, 391-400.	14.8	22
8	A new team is on the field Behavioral Neuroscience, 2021, 135, 1-1.	1.2	0
9	Editorial overview: Building and using models of the world. Current Opinion in Behavioral Sciences, 2021, 38, iii-v.	3.9	0
10	The magical orbitofrontal cortex Behavioral Neuroscience, 2021, 135, 108-108.	1.2	3
11	The orbitofrontal cartographer Behavioral Neuroscience, 2021, 135, 267-276.	1.2	20
12	Cross-species studies on orbitofrontal control of inference-based behavior Behavioral Neuroscience, 2021, 135, 109-119.	1.2	6
13	The orbitofrontal cortex is necessary for learning to ignore. Current Biology, 2021, 31, 2652-2657.e3.	3.9	13
14	Neuroscience: What, where, and how wonderful?. Current Biology, 2021, 31, R896-R898.	3.9	0
15	Spatial Representations in Rat Orbitofrontal Cortex. Journal of Neuroscience, 2021, 41, 6933-6945.	3.6	18
16	Orbitofrontal cortex and learning predictions of state transitions Behavioral Neuroscience, 2021, 135, 487-497.	1.2	5
17	Prospective representations in rat orbitofrontal ensembles Behavioral Neuroscience, 2021, 135, 518-527.	1.2	3
18	Is the core function of orbitofrontal cortex to signal values or make predictions?. Current Opinion in Behavioral Sciences, 2021, 41, 1-9.	3.9	20

#	Article	IF	CITATIONS
19	Replication efforts have limited epistemic value. Nature, 2021, 599, 201-201.	27.8	3
20	Targeted Stimulation of an Orbitofrontal Network Disrupts Decisions Based on Inferred, Not Experienced Outcomes. Journal of Neuroscience, 2020, 40, 8726-8733.	3.6	21
21	Processing in Lateral Orbitofrontal Cortex Is Required to Estimate Subjective Preference during Initial, but Not Established, Economic Choice. Neuron, 2020, 108, 526-537.e4.	8.1	20
22	Neuroscience: From Sensory Discrimination to Choice in Gustatory Cortex. Current Biology, 2020, 30, R444-R446.	3.9	0
23	Interactions between human orbitofrontal cortex and hippocampus support model-based inference. PLoS Biology, 2020, 18, e3000578.	5.6	165
24	Targeted Stimulation of Human Orbitofrontal Networks Disrupts Outcome-Guided Behavior. Current Biology, 2020, 30, 490-498.e4.	3.9	65
25	Causal evidence supporting the proposal that dopamine transients function as temporal difference prediction errors. Nature Neuroscience, 2020, 23, 176-178.	14.8	51
26	Dopamine transients do not act as model-free prediction errors during associative learning. Nature Communications, 2020, 11, 106.	12.8	44
27	Responding to preconditioned cues is devaluation sensitive and requires orbitofrontal cortex during cue-cue learning. ELife, 2020, 9, .	6.0	24
28	Sensory prediction errors in the human midbrain signal identity violations independent of perceptual distance. ELife, 2019, 8, .	6.0	26
29	Complementary Task Structure Representations in Hippocampus and Orbitofrontal Cortex during an Odor Sequence Task. Current Biology, 2019, 29, 3402-3409.e3.	3.9	42
30	Rat Orbitofrontal Ensemble Activity Contains Multiplexed but Dissociable Representations of Value and Task Structure in an Odor Sequence Task. Current Biology, 2019, 29, 897-907.e3.	3.9	62
31	Real-Time Value Integration during Economic Choice Is Regulated by Orbitofrontal Cortex. Current Biology, 2019, 29, 4315-4322.e4.	3.9	30
32	Expectancy-Related Changes in Dopaminergic Error Signals Are Impaired by Cocaine Self-Administration. Neuron, 2019, 101, 294-306.e3.	8.1	17
33	An Integrated Model of Action Selection: Distinct Modes of Cortical Control of Striatal Decision Making. Annual Review of Psychology, 2019, 70, 53-76.	17.7	76
34	Dopamine neuron ensembles signal the content of sensory prediction errors. ELife, 2019, 8, .	6.0	39
35	Orbitofrontal neurons signal reward predictions, not reward prediction errors. Neurobiology of Learning and Memory, 2018, 153, 137-143.	1.9	43
36	Evaluation of the hypothesis that phasic dopamine constitutes a cached-value signal. Neurobiology of Learning and Memory, 2018, 153, 131-136.	1.9	23

GEOFFREY SCHOENBAUM

#	Article	IF	CITATIONS
37	Model-based predictions for dopamine. Current Opinion in Neurobiology, 2018, 49, 1-7.	4.2	119
38	Rethinking dopamine as generalized prediction error. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181645.	2.6	111
39	Manipulating the revision of reward value during the intertrial interval increases sign tracking and dopamine release. PLoS Biology, 2018, 16, e2004015.	5.6	24
40	Brief, But Not Prolonged, Pauses in the Firing of Midbrain Dopamine Neurons Are Sufficient to Produce a Conditioned Inhibitor. Journal of Neuroscience, 2018, 38, 8822-8830.	3.6	29
41	Does the Dopaminergic Error Signal Act Like a Cached-Value Prediction Error?. , 2018, , 243-258.		0
42	Orbitofrontal neurons signal sensory associations underlying model-based inference in a sensory preconditioning task. ELife, 2018, 7, .	6.0	70
43	Medial orbitofrontal inactivation does not affect economic choice. ELife, 2018, 7, .	6.0	30
44	Toward a theoretical role for tonic norepinephrine in the orbitofrontal cortex in facilitating flexible learning. Neuroscience, 2017, 345, 124-129.	2.3	46
45	Rat mPFC and M2 Play a Waiting Game (at Different Timescales). Neuron, 2017, 94, 700-702.	8.1	0
46	Dopamine transients are sufficient and necessary for acquisition of model-based associations. Nature Neuroscience, 2017, 20, 735-742.	14.8	222
47	Effects of inference on dopaminergic prediction errors depend on orbitofrontal processing Behavioral Neuroscience, 2017, 131, 127-134.	1.2	21
48	Optogenetic Blockade of Dopamine Transients Prevents Learning Induced by Changes in Reward Features. Current Biology, 2017, 27, 3480-3486.e3.	3.9	61
49	Dopamine Neurons Respond to Errors in the Prediction of Sensory Features of Expected Rewards. Neuron, 2017, 95, 1395-1405.e3.	8.1	154
50	Suppression of Ventral Hippocampal Output Impairs Integrated Orbitofrontal Encoding of Task Structure. Neuron, 2017, 95, 1197-1207.e3.	8.1	75
51	Lateral Orbitofrontal Inactivation Dissociates Devaluation-Sensitive Behavior and Economic Choice. Neuron, 2017, 96, 1192-1203.e4.	8.1	62
52	Lateral Hypothalamic GABAergic Neurons Encode Reward Predictions that Are Relayed to the Ventral Tegmental Area to Regulate Learning. Current Biology, 2017, 27, 2089-2100.e5.	3.9	90
53	The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning. Frontiers in Psychology, 2017, 8, 244.	2.1	66
54	Ensembles in medial and lateral orbitofrontal cortex construct cognitive maps emphasizing different features of the behavioral landscape Behavioral Neuroscience, 2017, 131, 201-212.	1.2	32

#	Article	IF	CITATIONS
55	Preconditioned cues have no value. ELife, 2017, 6, .	6.0	37
56	Ventral striatal lesions disrupt dopamine neuron signaling of differences in cue value caused by changes in reward timing but not number Behavioral Neuroscience, 2016, 130, 593-599.	1.2	6
5 7	Back to basics: Making predictions in the orbitofrontal–amygdala circuit. Neurobiology of Learning and Memory, 2016, 131, 201-206.	1.9	58
58	Medial Orbitofrontal Neurons Preferentially Signal Cues Predicting Changes in Reward during Unblocking. Journal of Neuroscience, 2016, 36, 8416-8424.	3.6	28
59	Thinking Outside the Box: Orbitofrontal Cortex, Imagination, and How We Can Treat Addiction. Neuropsychopharmacology, 2016, 41, 2966-2976.	5.4	39
60	Neural correlates of two different types of extinction learning in the amygdala central nucleus. Nature Communications, 2016, 7, 12330.	12.8	15
61	Cholinergic Interneurons Use Orbitofrontal Input to Track Beliefs about Current State. Journal of Neuroscience, 2016, 36, 6242-6257.	3.6	61
62	Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nature Reviews Neuroscience, 2016, 17, 513-523.	10.2	259
63	Temporal Specificity of Reward Prediction Errors Signaled by Putative Dopamine Neurons in Rat VTA Depends on Ventral Striatum. Neuron, 2016, 91, 182-193.	8.1	93
64	Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nature Neuroscience, 2016, 19, 111-116.	14.8	163
65	Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework. ELife, 2016, 5, .	6.0	103
66	Effect of the Novel Positive Allosteric Modulator of Metabotropic Glutamate Receptor 2 AZD8529 on Incubation of Methamphetamine Craving After Prolonged Voluntary Abstinence in a Rat Model. Biological Psychiatry, 2015, 78, 463-473.	1.3	122
67	The State of the Orbitofrontal Cortex. Neuron, 2015, 88, 1075-1077.	8.1	17
68	Neural Estimates of Imagined Outcomes in Basolateral Amygdala Depend on Orbitofrontal Cortex. Journal of Neuroscience, 2015, 35, 16521-16530.	3.6	30
69	Interneurons Are Necessary for Coordinated Activity During Reversal Learning in Orbitofrontal Cortex. Biological Psychiatry, 2015, 77, 454-464.	1.3	63
70	Dialogue on economic choice, learning theory, and neuronal representations. Current Opinion in Behavioral Sciences, 2015, 5, 16-23.	3.9	31
71	Effects of Prior Cocaine Versus Morphine or Heroin Self-Administration on Extinction Learning Driven by Overexpectation Versus Omission of Reward. Biological Psychiatry, 2015, 77, 912-920.	1.3	23
72	What the orbitofrontal cortex does not do. Nature Neuroscience, 2015, 18, 620-627.	14.8	427

#	Article	IF	CITATIONS
73	Altered Basolateral Amygdala Encoding in an Animal Model of Schizophrenia. Journal of Neuroscience, 2015, 35, 6394-6400.	3.6	9
74	Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons. Nature Communications, 2015, 6, 7195.	12.8	23
75	Lateral orbitofrontal neurons acquire responses to upshifted, downshifted, or blocked cues during unblocking. ELife, 2015, 4, e11299.	6.0	39
76	Orbitofrontal activation restores insight lost after cocaine use. Nature Neuroscience, 2014, 17, 1092-1099.	14.8	57
77	The dorsal raphe nucleus is integral to negative prediction errors in Pavlovian fear. European Journal of Neuroscience, 2014, 40, 3096-3101.	2.6	41
78	Orbitofrontal neurons infer the value and identity of predicted outcomes. Nature Communications, 2014, 5, 3926.	12.8	93
79	Learning theory: A driving force in understanding orbitofrontal function. Neurobiology of Learning and Memory, 2014, 108, 22-27.	1.9	50
80	Orbitofrontal Cortex as a Cognitive Map of Task Space. Neuron, 2014, 81, 267-279.	8.1	709
81	Orbitofrontal neurons acquire responses to †valueless' Pavlovian cues during unblocking. ELife, 2014, 3, e02653.	6.0	63
82	How Did the Chicken Cross the Road? With Her Striatal Cholinergic Interneurons, Of Course. Neuron, 2013, 79, 3-6.	8.1	18
83	Neural Estimates of Imagined Outcomes in the Orbitofrontal Cortex Drive Behavior and Learning. Neuron, 2013, 80, 507-518.	8.1	76
84	Risk-Responsive Orbitofrontal Neurons Track Acquired Salience. Neuron, 2013, 77, 251-258.	8.1	68
85	Dopamine signals mimic reward prediction errors. Nature Neuroscience, 2013, 16, 777-779.	14.8	5
86	Disruption of model-based behavior and learning by cocaine self-administration in rats. Psychopharmacology, 2013, 229, 493-501.	3.1	18
87	Optogenetic Inhibition of Dorsal Medial Prefrontal Cortex Attenuates Stress-Induced Reinstatement of Palatable Food Seeking in Female Rats. Journal of Neuroscience, 2013, 33, 214-226.	3.6	64
88	Normal Aging Alters Learning and Attention-Related Teaching Signals in Basolateral Amygdala. Journal of Neuroscience, 2012, 32, 13137-13144.	3.6	18
89	Willingness to Wait and Altered Encoding of Time-Discounted Reward in the Orbitofrontal Cortex with Normal Aging. Journal of Neuroscience, 2012, 32, 5525-5533.	3.6	31
90	Reward Prediction Error Signaling in Posterior Dorsomedial Striatum Is Action Specific. Journal of Neuroscience, 2012, 32, 10296-10305.	3.6	55

#	Article	IF	CITATIONS
91	Attention-Related Pearce-Kaye-Hall Signals in Basolateral Amygdala Require the Midbrain Dopaminergic System. Biological Psychiatry, 2012, 72, 1012-1019.	1.3	45
92	Orbitofrontal Cortex Supports Behavior and Learning Using Inferred But Not Cached Values. Science, 2012, 338, 953-956.	12.6	288
93	The impact of orbitofrontal dysfunction on cocaine addiction. Nature Neuroscience, 2012, 15, 358-366.	14.8	179
94	Modelâ€based learning and the contribution of the orbitofrontal cortex to the modelâ€free world. European Journal of Neuroscience, 2012, 35, 991-996.	2.6	74
95	Surprise! Neural correlates of Pearce–Hall and Rescorla–Wagner coexist within the brain. European Journal of Neuroscience, 2012, 35, 1190-1200.	2.6	157
96	Impaired Reality Testing in an Animal Model of Schizophrenia. Biological Psychiatry, 2011, 70, 1122-1126.	1.3	35
97	Differential roles of human striatum and amygdala in associative learning. Nature Neuroscience, 2011, 14, 1250-1252.	14.8	300
98	Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nature Neuroscience, 2011, 14, 1590-1597.	14.8	224
99	Normal Aging does Not Impair Orbitofrontal-Dependent Reinforcer Devaluation Effects. Frontiers in Aging Neuroscience, 2011, 3, 4.	3.4	9
100	Contrasting Effects of Lithium Chloride and CB1 Receptor Blockade on Enduring Changes in the Valuation of Reward. Frontiers in Behavioral Neuroscience, 2011, 5, 53.	2.0	4
101	Does the orbitofrontal cortex signal value?. Annals of the New York Academy of Sciences, 2011, 1239, 87-99.	3.8	203
102	Ventral Striatum and Orbitofrontal Cortex Are Both Required for Model-Based, But Not Model-Free, Reinforcement Learning. Journal of Neuroscience, 2011, 31, 2700-2705.	3.6	201
103	The role of the nucleus accumbens in knowing when to respond. Learning and Memory, 2011, 18, 85-87.	1.3	11
104	How do you (estimate you will) like them apples? Integration as a defining trait of orbitofrontal function. Current Opinion in Neurobiology, 2010, 20, 205-211.	4.2	111
105	Neural correlates of stimulus-response and response-outcome associations in dorsolateral versus dorsomedial striatum. Frontiers in Integrative Neuroscience, 2010, 4, 12.	2.1	96
106	Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on Pavlovian conditioned responding. Frontiers in Integrative Neuroscience, 2010, 4, 126.	2.1	38
107	All That Glitters … Dissociating Attention and Outcome Expectancy From Prediction Errors Signals. Journal of Neurophysiology, 2010, 104, 587-595.	1.8	61
108	Inactivation of the Central But Not the Basolateral Nucleus of the Amygdala Disrupts Learning in Response to Overexpectation of Reward: Figure 1 Journal of Neuroscience, 2010, 30, 2911-2917.	3.6	27

#	Article	IF	CITATIONS
109	Neural Correlates of Variations in Event Processing during Learning in Basolateral Amygdala. Journal of Neuroscience, 2010, 30, 2464-2471.	3.6	147
110	More ls Less: A Disinhibited Prefrontal Cortex Impairs Cognitive Flexibility. Journal of Neuroscience, 2010, 30, 17102-17110.	3.6	157
111	Neural Correlates of Variations in Event Processing during Learning in Central Nucleus of Amygdala. Neuron, 2010, 68, 991-1001.	8.1	64
112	Ventral Striatal Neurons Encode the Value of the Chosen Action in Rats Deciding between Differently Delayed or Sized Rewards. Journal of Neuroscience, 2009, 29, 13365-13376.	3.6	176
113	Toward a Model of Impaired Reality Testing in Rats. Schizophrenia Bulletin, 2009, 35, 664-667.	4.3	25
114	A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature Reviews Neuroscience, 2009, 10, 885-892.	10.2	501
115	Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with â€~disinhibition' of responding for previously unrewarded cues. European Journal of Neuroscience, 2009, 30, 1941-1946.	2.6	71
116	The Orbitofrontal Cortex and Ventral Tegmental Area Are Necessary for Learning from Unexpected Outcomes. Neuron, 2009, 62, 269-280.	8.1	252
117	Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology, 2009, 56, 63-72.	4.1	135
118	The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature, 2008, 454, 340-344.	27.8	155
119	The Role of Orbitofrontal Cortex in Drug Addiction: A Review of Preclinical Studies. Biological Psychiatry, 2008, 63, 256-262.	1.3	270
120	Cocaine-Paired Cues Activate Aversive Representations in Accumbens Neurons. Neuron, 2008, 57, 633.	8.1	6
121	Dialogues on prediction errors. Trends in Cognitive Sciences, 2008, 12, 265-272.	7.8	286
122	E pluribus unum? A new take on addiction by Redish et al Behavioral and Brain Sciences, 2008, 31, 459-459.	0.7	0
123	Double Dissociation of the Effects of Medial and Orbital Prefrontal Cortical Lesions on Attentional and Affective Shifts in Mice. Journal of Neuroscience, 2008, 28, 11124-11130.	3.6	320
124	Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learning and Memory, 2007, 14, 325-328.	1.3	127
125	What We Know and Do Not Know about the Functions of the Orbitofrontal Cortex after 20 Years of Cross-Species Studies: Figure 1 Journal of Neuroscience, 2007, 27, 8166-8169.	3.6	217
126	Previous Cocaine Exposure Makes Rats Hypersensitive to Both Delay and Reward Magnitude. Journal of Neuroscience, 2007, 27, 245-250.	3.6	134

#	Article	IF	CITATIONS
127	Basolateral Amygdala Lesions Abolish Orbitofrontal-Dependent Reversal Impairments. Neuron, 2007, 54, 51-58.	8.1	176
128	Conditioned reinforcement can be mediated by either outcome-specific or general affective representations. Frontiers in Integrative Neuroscience, 2007, 1, 2.	2.1	37
129	Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum. Frontiers in Integrative Neuroscience, 2007, 1, 11.	2.1	58
130	A role for BDNF in cocaine reward and relapse. Nature Neuroscience, 2007, 10, 935-936.	14.8	44
131	Cocaine-induced decision-making deficits are mediated by miscoding in basolateral amygdala. Nature Neuroscience, 2007, 10, 949-951.	14.8	53
132	Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nature Neuroscience, 2007, 10, 1615-1624.	14.8	538
133	Should I Stay or Should I Go?: Transformation of Time-Discounted Rewards in Orbitofrontal Cortex and Associated Brain Circuits. Annals of the New York Academy of Sciences, 2007, 1104, 21-34.	3.8	43
134	Reconciling the Roles of Orbitofrontal Cortex in Reversal Learning and the Encoding of Outcome Expectancies. Annals of the New York Academy of Sciences, 2007, 1121, 320-335.	3.8	126
135	Neural Correlates of Inflexible Behavior in the Orbitofrontal–Amygdalar Circuit after Cocaine Exposure. Annals of the New York Academy of Sciences, 2007, 1121, 598-609.	3.8	29
136	Encoding of Time-Discounted Rewards in Orbitofrontal Cortex Is Independent of Value Representation. Neuron, 2006, 51, 509-520.	8.1	280
137	Orbitofrontal cortex, decision-making and drug addiction. Trends in Neurosciences, 2006, 29, 116-124.	8.6	438
138	Paying Attention. Focus on "State-Dependent Modulation of Time-Varying Gustatory Responses― Journal of Neurophysiology, 2006, 96, 2844-2844.	1.8	0
139	Encoding Changes in Orbitofrontal Cortex in Reversal-Impaired Aged Rats. Journal of Neurophysiology, 2006, 95, 1509-1517.	1.8	98
140	Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. European Journal of Neuroscience, 2006, 24, 2643-2653.	2.6	79
141	Prior cocaine exposure disrupts extinction of fear conditioning. Learning and Memory, 2006, 13, 416-421.	1.3	33
142	Cocaine Makes Actions Insensitive to Outcomes but not Extinction: Implications for Altered Orbitofrontal–Amygdalar Function. Cerebral Cortex, 2005, 15, 1162-1169.	2.9	166
143	Thanks for the memories Learning and Memory, 2005, 12, 547-548.	1.3	3
144	Rapid Associative Encoding in Basolateral Amygdala Depends on Connections with Orbitofrontal Cortex. Neuron, 2005, 46, 321-331.	8.1	201

#	Article	IF	CITATIONS
145	Orbitofrontal Cortex, Associative Learning, and Expectancies. Neuron, 2005, 47, 633-636.	8.1	410
146	Affect, Action, and Ambiguity and the Amygdala-Orbitofrontal Circuit. Focus on "Combined Unilateral Lesions of the Amygdala and Orbital Prefrontal Cortex Impair Affective Processing in Rhesus Monkeys― Journal of Neurophysiology, 2004, 91, 1938-1939.	1.8	6
147	Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. European Journal of Neuroscience, 2004, 19, 1997-2002.	2.6	179
148	A systems approach to orbitofrontal cortex function: recordings in rat orbitofrontal cortex reveal interactions with different learning systems. Behavioural Brain Research, 2003, 146, 19-29.	2.2	110
149	Neural Encoding in Ventral Striatum during Olfactory Discrimination Learning. Neuron, 2003, 38, 625-636.	8.1	196
150	Encoding Predicted Outcome and Acquired Value in Orbitofrontal Cortex during Cue Sampling Depends upon Input from Basolateral Amygdala. Neuron, 2003, 39, 855-867.	8.1	425
151	Lesions of Orbitofrontal Cortex and Basolateral Amygdala Complex Disrupt Acquisition of Odor-Guided Discriminations and Reversals. Learning and Memory, 2003, 10, 129-140.	1.3	270
152	Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task. Journal of Neuroscience, 2003, 23, 11078-11084.	3.6	417
153	Lesions of Nucleus Accumbens Disrupt Learning about Aversive Outcomes. Journal of Neuroscience, 2003, 23, 9833-9841.	3.6	128
154	Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. NeuroReport, 2002, 13, 885-890.	1.2	298
155	Teaching old rats new tricks: age-related impairments in olfactory reversal learning. Neurobiology of Aging, 2002, 23, 555-564.	3.1	117
156	A novel method for detecting licking behavior during recording of electrophysiological signals from the brain. Journal of Neuroscience Methods, 2001, 106, 139-146.	2.5	10
157	Changes in Functional Connectivity in Orbitofrontal Cortex and Basolateral Amygdala during Learning and Reversal Training. Journal of Neuroscience, 2000, 20, 5179-5189.	3.6	208
158	Neural Encoding in Orbitofrontal Cortex and Basolateral Amygdala during Olfactory Discrimination Learning. Journal of Neuroscience, 1999, 19, 1876-1884.	3.6	539
159	Orbitofrontal Cortex and Representation of Incentive Value in Associative Learning. Journal of Neuroscience, 1999, 19, 6610-6614.	3.6	579
160	Functions of the Amygdala and Related Forebrain Areas in Attention and Cognition. Annals of the New York Academy of Sciences, 1999, 877, 397-411.	3.8	62
161	Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience, 1998, 1, 155-159.	14.8	812