A J Charlton-Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1523198/publications.pdf

Version: 2024-02-01

86 papers

5,804 citations

76326 40 h-index 76900 74 g-index

94 all docs 94 docs citations 94 times ranked

3489 citing authors

#	Article	IF	CITATIONS
1	Advances in the Application and Utility of Subseasonal-to-Seasonal Predictions. Bulletin of the American Meteorological Society, 2022, 103, E1448-E1472.	3.3	45
2	Long-range prediction and the stratosphere. Atmospheric Chemistry and Physics, 2022, 22, 2601-2623.	4.9	24
3	Advances in the Subseasonal Prediction of Extreme Events: Relevant Case Studies across the Globe. Bulletin of the American Meteorological Society, 2022, 103, E1473-E1501.	3.3	29
4	Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts. Geoscientific Model Development, 2022, 15, 5073-5092.	3.6	6
5	Sudden Stratospheric Warmings. Reviews of Geophysics, 2021, 59, .	23.0	204
6	Impact of sudden stratospheric warmings on United Kingdom mortality. Atmospheric Science Letters, 2021, 22, e1013.	1.9	11
7	Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses. Atmospheric Chemistry and Physics, 2021, 21, 6079-6092.	4.9	12
8	Sub-seasonal forecasts of demand and wind power and solar power generation for 28 European countries. Earth System Science Data, 2021, 13, 2259-2274.	9.9	19
9	Patternâ€based conditioning enhances subâ€seasonal prediction skill of European national energy variables. Meteorological Applications, 2021, 28, e2018.	2.1	10
10	A Minimal Model to Diagnose the Contribution of the Stratosphere to Tropospheric Forecast Skill. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	3
11	Designing environmental uncertainty information for experts and nonâ€experts: Does data presentation affect users' decisions and interpretations?. Meteorological Applications, 2020, 27, e1821.	2.1	7
12	The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030920.	3.3	78
13	The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 2. Predictability Arising From Stratosphereâ€Troposphere Coupling. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030923.	3.3	119
14	Assimilation of atmospheric infrasound data to constrain tropospheric and stratospheric winds. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 2634-2653.	2.7	10
15	Deterministic prediction of stratospheric sudden warming events in the Global/Regional Integrated Model system (GRIMs). Climate Dynamics, 2020, 55, 1209-1223.	3.8	4
16	Representation of the Scandinavia–Greenland pattern and its relationship with the polar vortex in S2S forecast models. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 4083-4098.	2.7	6
17	Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types. Meteorological Applications, 2020, 27, e1858.	2.1	42
18	Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphereâ€Troposphere Coupling to Quadrupled CO ₂ Concentrations in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032345.	3.3	50

#	Article	IF	Citations
19	Weather regimes and patterns associated with temperature-related excess mortality in the UK: a pathway to sub-seasonal risk forecasting. Environmental Research Letters, 2020, 15, 124052.	5.2	18
20	Abrupt Stratospheric Vortex Weakening Associated With North Atlantic Anticyclonic Wave Breaking. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8563-8575.	3.3	29
21	Winter pressures on the UK health system dominated by the Greenland Blocking weather regime. Weather and Climate Extremes, 2019, 25, 100218.	4.1	16
22	When and where do ECMWF seasonal forecast systems exhibit anomalously low signalâ€toâ€noise ratio?. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3466-3478.	2.7	2
23	Predictability of Northern Hemisphere Final Stratospheric Warmings and Their Surface Impacts. Geophysical Research Letters, 2019, 46, 10578-10588.	4.0	41
24	Estimating tropospheric and stratospheric winds using infrasound from explosions. Journal of the Acoustical Society of America, 2019, 146, 973-982.	1.1	28
25	Storm naming and forecast communication: A case study of Storm Doris. Meteorological Applications, 2019, 26, 682-697.	2.1	6
26	Meteorological Source Variability in Atmospheric Gravity Wave Parameters Derived From a Tropical Infrasound Station. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4352-4364.	3.3	1
27	Wintertime North American Weather Regimes andÂtheÂArctic Stratospheric Polar Vortex. Geophysical Research Letters, 2019, 46, 14892-14900.	4.0	44
28	ENSO Modulation of MJO Teleconnections to the North Atlantic and Europe. Geophysical Research Letters, 2019, 46, 13535-13545.	4.0	60
29	Calculating Atmospheric Gravity Wave Parameters from Infrasound Measurements. , 2019, , 701-719.		6
30	Sub-seasonal Predictability and the Stratosphere. , 2019, , 223-241.		41
31	The Potential Impact of Upper Stratospheric Measurements on Sub-seasonal Forecasts in the Extra-Tropics. , 2019, , 889-907.		13
32	The influence of the stratospheric state on North Atlantic weather regimes. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1140-1151.	2.7	80
33	Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project. Surveys in Geophysics, 2018, 39, 171-225.	4.6	47
34	Best Scale for Detecting the Effects of Stratospheric Sulfate Aerosol Geoengineering on Surface Temperature. Earth's Future, 2018, 6, 1660.	6.3	2
35	Predicting Sudden Stratospheric Warming 2018 and Its Climate Impacts With a Multimodel Ensemble. Geophysical Research Letters, 2018, 45, 13,538.	4.0	95
36	Chilean Wildfires: Probabilistic Prediction, Emergency Response, and Public Communication. Bulletin of the American Meteorological Society, 2018, 99, 2259-2274.	3.3	10

#	Article	IF	Citations
37	Visualizing Volcanic Ash Forecasts: Scientist and Stakeholder Decisions Using Different Graphical Representations and Conflicting Forecasts. Weather, Climate, and Society, 2017, 9, 333-348.	1.1	14
38	Developing a quick guide on presenting data and uncertainty. Weather, 2017, 72, 266-269.	0.7	2
39	Vortex splitting on a planetary scale in the stratosphere by cyclogenesis on a subplanetary scale in the troposphere. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 691-705.	2.7	14
40	Examining the Predictability of the Stratospheric Sudden Warming of January 2013 Using Multiple NWP Systems. Monthly Weather Review, 2016, 144, 1935-1960.	1.4	62
41	Detecting sulphate aerosol geoengineering with different methods. Scientific Reports, 2016, 6, 39169.	3.3	11
42	The Climateâ€system Historical Forecast Project: do stratosphereâ€resolving models make better seasonal climate predictions in boreal winter?. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 1413-1427.	2.7	91
43	The predictability of the extratropical stratosphere on monthly timeâ€scales and its impact on the skill of tropospheric forecasts. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 987-1003.	2.7	162
44	Comparison of coâ€located independent groundâ€based middle atmospheric wind and temperature measurements with numerical weather prediction models. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8318-8331.	3.3	85
45	Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environmental Research Letters, 2015, 10, 104007.	5.2	61
46	Do location-specific forecasts pose a new challenge for communicating uncertainty?. Meteorological Applications, 2015, 22, 554-562.	2.1	14
47	Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols. Journal of Geophysical Research D: Atmospheres, 2015, 120, 414-429.	3.3	47
48	Improving the Health Forecasting Alert System for Cold Weather and Heat-Waves In England: A Proof-of-Concept Using Temperature-Mortality Relationships. PLoS ONE, 2015, 10, e0137804.	2.5	21
49	A Risk-Based Framework for Assessing the Effectiveness of Stratospheric Aerosol Geoengineering. PLoS ONE, 2014, 9, e88849.	2.5	15
50	Weakened tropical circulation and reduced precipitation in response to geoengineering. Environmental Research Letters, 2014, 9, 014001.	5.2	66
51	Verification of European Subseasonal Wind Speed Forecasts. Monthly Weather Review, 2014, 142, 2978-2990.	1.4	31
52	Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7979-7998.	3.3	131
53	On the lack of stratospheric dynamical variability in lowâ€top versions of the CMIP5 models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2494-2505.	3.3	268
54	The Influence of Stratospheric Vortex Displacements and Splits on Surface Climate. Journal of Climate, 2013, 26, 2668-2682.	3.2	213

#	Article	IF	Citations
55	Final warming of the Southern Hemisphere polar vortex in high―and lowâ€ŧop CMIP5 models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2535-2546.	3.3	29
56	Problem-Based Learning Approaches in Meteorology. Journal of Geoscience Education, 2013, 61, 12-19.	1.4	12
57	The Effect of Climate Change on the Variability of the Northern Hemisphere Stratospheric Polar Vortex. Journals of the Atmospheric Sciences, 2012, 69, 2608-2618.	1.7	43
58	Assessing and Understanding the Impact of Stratospheric Dynamics and Variability on the Earth System. Bulletin of the American Meteorological Society, 2012, 93, 845-859.	3.3	146
59	Trends in Austral jet position in ensembles of high―and lowâ€ŧop CMIP5 models. Journal of Geophysical Research, 2012, 117, .	3.3	68
60	Correction to "Stratospheric heating by potential geoengineering aerosols― Geophysical Research Letters, 2012, 39, n/a-n/a.	4.0	1
61	The nature of Arctic polar vortices in chemistry–climate models. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1681-1691.	2.7	14
62	Multimodel climate and variability of the stratosphere. Journal of Geophysical Research, 2011, 116, .	3.3	139
63	Stratospheric heating by potential geoengineering aerosols. Geophysical Research Letters, 2011, 38, $n/a-n/a$.	4.0	58
64	The structure and evolution of the stratospheric vortex in response to natural forcings. Journal of Geophysical Research, $2011,116,116$	3.3	39
65	Improved predictability of the troposphere using stratospheric final warmings. Journal of Geophysical Research, 2011, 116, .	3.3	70
66	Stratospheric circulation in seasonal forecasting models: implications for seasonal prediction. Climate Dynamics, 2011, 36, 309-321.	3.8	36
67	Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Climate Dynamics, 2011, 37, 1443-1456.	3.8	63
68	Lewis Fry Richardson's forecast factory – for real. Weather, 2011, 66, 52-54.	0.7	0
69	Spatiotemporal Behavior of the TIGGE Medium-Range Ensemble Forecasts. Monthly Weather Review, 2011, 139, 2561-2571.	1.4	2
70	On the Use of Geometric Moments to Examine the Continuum of Sudden Stratospheric Warmings. Journals of the Atmospheric Sciences, 2011, 68, 657-674.	1.7	31
71	Characterizing the Variability and Extremes of the Stratospheric Polar Vortices Using 2D Moment Analysis. Journals of the Atmospheric Sciences, 2011, 68, 1194-1213.	1.7	88
72	The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century. Atmospheric Chemistry and Physics, 2010, 10, 9473-9486.	4.9	25

#	Article	IF	CITATIONS
73	Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmospheric Chemistry and Physics, 2010, 10, 9451-9472.	4.9	215
74	On the Sensitivity of Annular Mode Dynamics to Stratospheric Radiative Time Scales. Journal of Climate, 2010, 23, 476-484.	3.2	9
75	Associations between stratospheric variability and tropospheric blocking. Journal of Geophysical Research, 2010, 115, .	3.3	143
76	Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophysical Research Letters, 2010, 37, .	4.0	62
77	General Concepts in Meteorology and Dynamics. , 2010, , 325-349.		0
78	Stratospheric Communication of El Niño Teleconnections to European Winter. Journal of Climate, 2009, 22, 4083-4096.	3.2	194
79	A New Look at Stratospheric Sudden Warmings. Part III: Polar Vortex Evolution and Vertical Structure. Journal of Climate, 2009, 22, 1566-1585.	3.2	124
80	The frequency and dynamics of stratospheric sudden warmings in the 21st century. Journal of Geophysical Research, 2008, 113, .	3.3	46
81	The Effect of Lower Stratospheric Shear on Baroclinic Instability. Journals of the Atmospheric Sciences, 2007, 64, 479-496.	1.7	94
82	A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks. Journal of Climate, 2007, 20, 449-469.	3.2	833
83	A New Look at Stratospheric Sudden Warmings. Part II: Evaluation of Numerical Model Simulations. Journal of Climate, 2007, 20, 470-488.	3.2	129
84	The Splitting of the Stratospheric Polar Vortex in the Southern Hemisphere, September 2002: Dynamical Evolution. Journals of the Atmospheric Sciences, 2005, 62, 590-602.	1.7	73
85	Stratospheric Memory and Skill of Extended-Range Weather Forecasts. Science, 2003, 301, 636-640.	12.6	455
86	Non-linear response of temperature-related mortality risk to global warming in England and Wales. Environmental Research Letters, 0, , .	5.2	10