
Diogo S Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1522857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Function of Proneural Genes Ascl1 and Asense in Neurogenesis: How Similar Are They?. Frontiers in Cell and Developmental Biology, 2022, 10, 838431.	3.7	8
2	Function and regulation of transcription factors during mitosis-to-G1 transition. Open Biology, 2022, 12, .	3.6	2
3	Tlx3 Exerts Direct Control in Specifying Excitatory Over Inhibitory Neurons in the Dorsal Spinal Cord. Frontiers in Cell and Developmental Biology, 2021, 9, 642697.	3.7	4
4	Hierarchical reactivation of transcription during mitosis-to-G1 transition by Brn2 and Ascl1 in neural stem cells. Genes and Development, 2021, 35, 1020-1034.	5.9	11
5	Cadherin Expression and EMT: A Focus on Gliomas. Biomedicines, 2021, 9, 1328.	3.2	30
6	Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding. Neuron, 2021, 109, 2847-2863.e11.	8.1	26
7	PAD2-Mediated Citrullination Contributes to Efficient Oligodendrocyte Differentiation and Myelination. Cell Reports, 2019, 27, 1090-1102.e10.	6.4	59
8	Chromatin Immunoprecipitation from Mouse Embryonic Tissue or Adherent Cells in Culture, Followed by Next-Generation Sequencing. Methods in Molecular Biology, 2018, 1689, 53-63.	0.9	2
9	A Zeb2-miR-200c loop controls midbrain dopaminergic neuron neurogenesis and migration. Communications Biology, 2018, 1, 75.	4.4	13
10	Zeb1 potentiates genomeâ€wide gene transcription with Lef1 to promote glioblastoma cell invasion. EMBO Journal, 2018, 37, .	7.8	47
11	Coordinating neuronal differentiation with repression of the progenitor program: Role of the transcription factor MyT1. Neurogenesis (Austin, Tex), 2017, 4, e1329683.	1.5	2
12	One more factor joins the plot: Pbx1 regulates differentiation and survival of midbrain dopaminergic neurons. EMBO Journal, 2016, 35, 1957-1959.	7.8	4
13	MyT1 Counteracts the Neural Progenitor Program to Promote Vertebrate Neurogenesis. Cell Reports, 2016, 17, 469-483.	6.4	56
14	Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition. ELife, 2016, 5, .	6.0	60
15	Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis. Cell Reports, 2015, 10, 1544-1556.	6.4	169
16	Cenpj/CPAP regulates progenitor divisions and neuronal migration in the cerebral cortex downstream of Ascl1. Nature Communications, 2015, 6, 6474.	12.8	51
17	The Zinc Finger Transcription Factor RP58 Negatively Regulates Rnd2 for the Control of Neuronal Migration During Cerebral Cortical Development. Cerebral Cortex, 2015, 25, 806-816.	2.9	42
18	Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal. Genome Research, 2015, 25, 41-56.	5.5	60

DIOGO S CASTRO

#	Article	IF	CITATIONS
19	Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1. Frontiers in Cellular Neuroscience, 2014, 8, 412.	3.7	65
20	A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development (Cambridge), 2014, 141, 3102-3102.	2.5	5
21	Paired related homeobox proteinâ€like 1 (Prrxl1) controls its own expression by a transcriptional autorepression mechanism. FEBS Letters, 2014, 588, 3475-3482.	2.8	9
22	A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development (Cambridge), 2014, 141, 2803-2812.	2.5	86
23	Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons. Cell, 2013, 155, 621-635.	28.9	531
24	TherMos: Estimating protein–DNA binding energies from in vivo binding profiles. Nucleic Acids Research, 2013, 41, 5555-5568.	14.5	20
25	Expression at the Imprinted Dlk1-Gtl2 Locus Is Regulated by Proneural Genes in the Developing Telencephalon. PLoS ONE, 2012, 7, e48675.	2.5	12
26	Old and new functions of proneural factors revealed by the genome-wide characterization of their transcriptional targets. Cell Cycle, 2011, 10, 4026-4031.	2.6	51
27	Proneural Transcription Factors Regulate Different Steps of Cortical Neuron Migration through Rnd-Mediated Inhibition of RhoA Signaling. Neuron, 2011, 69, 1069-1084.	8.1	196
28	A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes and Development, 2011, 25, 930-945.	5.9	368
29	Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development (Cambridge), 2009, 136, 2477-2485.	2.5	50
30	Conserved regulatory sequences in <i>Atoh7</i> mediate non-conserved regulatory responses in retina ontogenesis. Development (Cambridge), 2009, 136, 3767-3777.	2.5	36
31	Engineering of Dominant Active Basic Helix-Loop-Helix Proteins That Are Resistant to Negative Regulation by Postnatal Central Nervous System Antineurogenic Cues. Stem Cells, 2009, 27, 847-856.	3.2	29
32	Characterization of the proneural gene regulatory network during mouse telencephalon development. BMC Biology, 2008, 6, 15.	3.8	95
33	Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature, 2008, 455, 114-118.	27.8	249
34	Proneural bHLH and Brn Proteins Coregulate a Neurogenic Program through Cooperative Binding to a Conserved DNA Motif. Developmental Cell, 2006, 11, 831-844.	7.0	267
35	Coupling of cell migration with neurogenesis by proneural bHLH factors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1319-1324.	7.1	195
36	A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nature Neuroscience, 2005, 8, 616-625.	14.8	350

DIOGO S CASTRO

#	Article	IF	CITATIONS
37	Defining an N-terminal activation domain of the orphan nuclear receptor Nurr1. Biochemical and Biophysical Research Communications, 2004, 313, 205-211.	2.1	31
38	Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Experimental Cell Research, 2003, 288, 324-334.	2.6	146
39	Proneural genes and the specification of neural cell types. Nature Reviews Neuroscience, 2002, 3, 517-530.	10.2	1,331
40	Orphan Nuclear Receptor Nurr1 Is Essential for Ret Expression in Midbrain Dopamine Neurons and in the Brain Stem. Molecular and Cellular Neurosciences, 2001, 18, 649-663.	2.2	125
41	Induction of Cell Cycle Arrest and Morphological Differentiation by Nurr1 and Retinoids in Dopamine MN9D Cells. Journal of Biological Chemistry, 2001, 276, 43277-43284.	3.4	111
42	Activity of the Nurr1 Carboxyl-terminal Domain Depends on Cell Type and Integrity of the Activation Function 2. Journal of Biological Chemistry, 1999, 274, 37483-37490.	3.4	68
43	Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nature Biotechnology, 1999, 17, 653-659.	17.5	344
44	Retinoic Acid Receptor/Retinoid X Receptor Heterodimers Can Be Activated through Both Subunits Providing a Basis for Synergistic Transactivation and Cellular Differentiation. Journal of Biological Chemistry, 1997, 272, 9443-9449.	3.4	74