Senapathy Senthilvel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1522632/publications.pdf

Version: 2024-02-01

471509 434195 1,015 32 17 31 citations h-index g-index papers 35 35 35 1120 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Development and mapping of Simple Sequence Repeat markers for pearl millet from data mining of Expressed Sequence Tags. BMC Plant Biology, 2008, 8, 119.	3.6	114
2	Pearl millet [Pennisetum glaucum(L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics, 2013, 14, 159.	2.8	94
3	Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theoretical and Applied Genetics, 2011, 123, 239-250.	3.6	75
4	Exploiting rice–sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theoretical and Applied Genetics, 2009, 119, 1193-1204.	3.6	73
5	Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theoretical and Applied Genetics, 2013, 126, 2051-2064.	3.6	73
6	Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.). Genetic Resources and Crop Evolution, 2011, 58, 889-907.	1.6	64
7	Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet [Pennisetum glaucum (L.) R. Br.]. Molecular Breeding, 2012, 30, 1337-1353.	2.1	57
8	QTL and QTL $\hat{a} \in f\tilde{A} - \hat{a} \in f$ Environment Effects on Agronomic and Nitrogen Acquisition Traits in Rice. Journal of Integrative Plant Biology, 2008, 50, 1108-1117.	8.5	54
9	Evaluation of genetic diversity in Magnaporthe grisea populations adapted to finger millet using simple sequence repeats (SSRs) markers. Physiological and Molecular Plant Pathology, 2013, 84, 10-18.	2.5	36
10	In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Molecular Breeding, 2010, 26, 409-418.	2.1	32
11	Identification and Characterization of Toxigenic Fusaria Associated with Sorghum Grain Mold Complex in India. Mycopathologia, 2011, 171, 223-230.	3.1	30
12	Laboratory Information Management Software for genotyping workflows: applications in high throughput crop genotyping. BMC Bioinformatics, 2006, 7, 383.	2.6	25
13	Genetic diversity of safflower (<i>Carthamus tinctorius</i> L) germplasm as revealed by SSR markers. Plant Genetic Resources: Characterisation and Utilisation, 2017, 15, 1-11.	0.8	25
14	QTL mapping of pearl millet rust resistance using an integrated DArT- and SSR-based linkage map. Euphytica, 2016, 209, 461-476.	1.2	24
15	Assessing genetic diversity, allelic richness and genetic relationship among races in ICRISAT foxtail millet core collection. Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 214-223.	0.8	22
16	Quantitative trait loci associated with constitutive traits control water use in pearl millet [<i>Pennisetum glaucum</i> (L.) R. Br.]. Plant Biology, 2015, 17, 1073-1084.	3.8	22
17	Establishing a high throughput screening method for large scale phenotyping of castor genotypes for resistance to Fusarium wilt disease. Phytoparasitica, 2016, 44, 539-548.	1.2	17
18	Genetic variability and population structure in a collection of inbred lines derived from a core germplasm of castor. Journal of Plant Biochemistry and Biotechnology, 2017, 26, 27-34.	1.7	17

#	Article	IF	CITATIONS
19	Development and validation of an SNP genotyping array and construction of a high-density linkage map in castor. Scientific Reports, 2019, 9, 3003.	3.3	17
20	Population structure and linkage disequilibrium of ICRISAT foxtail millet (Setaria italica (L.)ÂP. Beauv.) core collection. Euphytica, 2014, 196, 423-435.	1.2	16
21	Development of a Set of Chromosome Segment Substitution Lines in Pearl Millet [<i>Pennisetum glaucum</i> (L.) R. Br.]. Crop Science, 2014, 54, 2175-2182.	1.8	12
22	Construction of Genetic Linkage Map and QTL Analysis of Sink-Size Traits in Pearl Millet (<i>Pennisetum glaucum</i>). ISRN Genetics, 2013, 2013, 1-14.	0.2	12
23	Genetic characterization of resistance to wilt disease caused by <i>Fusarium oxysporum</i> f. sp. <i>ricini</i> in castor (<i>Ricinus communis</i> L.). Plant Genetic Resources: Characterisation and Utilisation, 2018, 16, 169-177.	0.8	10
24	Marker-assisted selection for fast-track breeding of high oleic lines in safflower (Carthamus) Tj ETQq0 0 0 rgBT /C	Overlock 10	O Tf 50 542 To
25	Genomic regions associated with resistance to Fusarium wilt in castor identified through linkage and association mapping approaches. Genome, 2022, 65, 123-136.	2.0	9
26	SSR allelic diversity in relation to morphological traits and resistance to grain mould in sorghum. Crop and Pasture Science, 2010, 61, 230.	1.5	8
27	Genetic Markers, Trait Mapping and Marker-Assisted Selection in Plant Breeding. , 2015, , 65-88.		7
28	Wilt disease of castor: an overview. Indian Phytopathology, 2019, 72, 575-585.	1.2	7
29	Genetics, fertility behaviour and molecular marker analysis of a new TGMS line, TS6, in rice. Plant Breeding, 2004, 123, 235-240.	1.9	6
30	Genetic mapping reveals a major QTL associated with tolerance to the aphid, Uroleucon compositae (Theobald) in safflower (Carthamus tinctorius). Plant Breeding, 2021, 140, 320-330.	1.9	6
31	Development and characterization of tetraploid castor plants. Plant Genetic Resources: Characterisation and Utilisation, 2020, 18, 98-104.	0.8	5

Waxy bloom on capsules is a major determinant of early infection by gray mold (<i>Amphobotrys) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 1.0 2 2022, 170, 337-348.

3