Zhen Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1522393/publications.pdf Version: 2024-02-01

		9264	10158
341	23,834	74	140
papers	citations	h-index	g-index
361	361	361	24809
all docs	docs citations	times ranked	citing authors

ZHEN CHENC

#	Article	IF	CITATIONS
1	A small-molecule dye for NIR-II imaging. Nature Materials, 2016, 15, 235-242.	27.5	1,314
2	Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotechnology, 2008, 3, 557-562.	31.5	1,215
3	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
4	Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chemical Society Reviews, 2018, 47, 4258-4278.	38.1	737
5	Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5844-5849.	7.1	627
6	First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nature Biomedical Engineering, 2020, 4, 259-271.	22.5	622
7	A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nature Communications, 2017, 8, 15269.	12.8	458
8	Inâ€Vitro and Inâ€Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 3125-3129.	13.8	428
9	Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice. Small, 2009, 5, 126-134.	10.0	418
10	Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with Polyvinylpyrrolidone-Coated Iron Oxide Nanoparticles. ACS Nano, 2010, 4, 7151-7160.	14.6	417
11	Transferring Biomarker into Molecular Probe: Melanin Nanoparticle as a Naturally Active Platform for Multimodality Imaging. Journal of the American Chemical Society, 2014, 136, 15185-15194.	13.7	338
12	Biological imaging without autofluorescence in the second near-infrared region. Nano Research, 2015, 8, 3027-3034.	10.4	263
13	Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chemical Science, 2016, 7, 6203-6207.	7.4	263
14	Noninvasive Raman Spectroscopy in Living Mice for Evaluation of Tumor Targeting with Carbon Nanotubes. Nano Letters, 2008, 8, 2800-2805.	9.1	261
15	microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide. Journal of Nuclear Medicine, 2005, 46, 1707-18.	5.0	251
16	Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chemical Science, 2017, 8, 3489-3493.	7.4	238
17	Near-Infrared Fluorescent RGD Peptides for Optical Imaging of Integrin αvβ3 Expression in Living Mice. Bioconjugate Chemistry, 2005, 16, 1433-1441.	3.6	233
18	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	12.6	230

#	Article	IF	CITATIONS
19	Nanocompositeâ€Based Photodynamic Therapy Strategies for Deep Tumor Treatment. Small, 2015, 11, 5860-5887.	10.0	229
20	Peryleneâ€Diimideâ€Based Nanoparticles as Highly Efficient Photoacoustic Agents for Deep Brain Tumor Imaging in Living Mice. Advanced Materials, 2015, 27, 843-847.	21.0	222
21	Real-Time Intravital Imaging of RGDâ^'Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature. Nano Letters, 2008, 8, 2599-2606.	9.1	207
22	Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends in Molecular Medicine, 2010, 16, 574-583.	6.7	204
23	<i>In vivo</i> nearâ€infrared fluorescence imaging of cancer with nanoparticleâ€based probes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 349-366.	6.1	190
24	microPET-Based Biodistribution of Quantum Dots in Living Mice. Journal of Nuclear Medicine, 2007, 48, 1511-1518.	5.0	182
25	Molecular Optical Imaging with Radioactive Probes. PLoS ONE, 2010, 5, e9470.	2.5	177
26	Enhanced Fructose Utilization Mediated by SLC2A5 Is a Unique Metabolic Feature of Acute Myeloid Leukemia with Therapeutic Potential. Cancer Cell, 2016, 30, 779-791.	16.8	176
27	Targeted Microbubbles for Imaging Tumor Angiogenesis: Assessment of Whole-Body Biodistribution with Dynamic Micro-PET in Mice. Radiology, 2008, 249, 212-219.	7.3	175
28	NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials, 2014, 35, 3309-3318.	11.4	175
29	Ultrasmall Nearâ€Infrared Non admium Quantum Dots for in vivo Tumor Imaging. Small, 2010, 6, 256-261.	10.0	174
30	Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for <i>in vivo</i> second near-infrared window imaging and image-guided tumor surgery. Chemical Science, 2018, 9, 3105-3110.	7.4	173
31	Construction and Validation of Nano Cold Tripods for Molecular Imaging of Living Subjects. Journal of the American Chemical Society, 2014, 136, 3560-3571.	13.7	170
32	Multifunctional Biomedical Imaging in Physiological and Pathological Conditions Using a NIRâ€II Probe. Advanced Functional Materials, 2017, 27, 1700995.	14.9	169
33	Near-Infrared Fluorescent Deoxyglucose Analogue for Tumor Optical Imaging in Cell Culture and Living Mice. Bioconjugate Chemistry, 2006, 17, 662-669.	3.6	168
34	Engineering Melanin Nanoparticles as an Efficient Drug–Delivery System for Imagingâ€Guided Chemotherapy. Advanced Materials, 2015, 27, 5063-5069.	21.0	166
35	Polymethine Thiopyrylium Fluorophores with Absorption beyond 1000 nm for Biological Imaging in the Second Near-Infrared Subwindow. Journal of Medicinal Chemistry, 2019, 62, 2049-2059.	6.4	156
36	Novel dual-function near-infrared II fluorescence and PET probe for tumor delineation and image-guided surgery. Chemical Science, 2018, 9, 2092-2097.	7.4	149

#	Article	IF	CITATIONS
37	Engineered Knottin Peptides: A New Class of Agents for Imaging Integrin Expression in Living Subjects. Cancer Research, 2009, 69, 2435-2442.	0.9	146
38	High Affinity to Skeleton Rare Earth Doped Nanoparticles for Near-Infrared II Imaging. Nano Letters, 2019, 19, 2985-2992.	9.1	141
39	In Vivo Tumor-Targeted Fluorescence Imaging Using Near-Infrared Non-Cadmium Quantum Dots. Bioconjugate Chemistry, 2010, 21, 604-609.	3.6	137
40	Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe. ACS Nano, 2017, 11, 12276-12291.	14.6	137
41	HSA coated MnO nanoparticles with prominent MRI contrast for tumor imaging. Chemical Communications, 2010, 46, 6684.	4.1	132
42	Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale, 2015, 7, 6836-6842.	5.6	130
43	Affibody modified and radiolabeled gold–Iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials, 2013, 34, 2796-2806.	11.4	129
44	Harnessing the Power of Radionuclides for Optical Imaging: Cerenkov Luminescence Imaging. Journal of Nuclear Medicine, 2011, 52, 2009-2018.	5.0	128
45	Affibodyâ€Functionalized Gold–Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor. Small, 2011, 7, 625-633.	10.0	125
46	Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials, 2011, 32, 2141-2148.	11.4	125
47	Targeted Chemo-Photodynamic Combination Platform Based on the DOX Prodrug Nanoparticles for Enhanced Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 13016-13028.	8.0	123
48	Synthesis and Radioluminescence of PEGylated Eu ³⁺ â€doped Nanophosphors as Bioimaging Probes. Advanced Materials, 2011, 23, H195-9.	21.0	121
49	A Novel Clinically Translatable Fluorescent Nanoparticle for Targeted Molecular Imaging of Tumors in Living Subjects. Nano Letters, 2012, 12, 281-286.	9.1	120
50	Radiation‣uminescenceâ€Excited Quantum Dots for in vivo Multiplexed Optical Imaging. Small, 2010, 6, 1087-1091.	10.0	115
51	lschemic Postconditioning-Mediated miRNA-21 Protects against Cardiac ischemia/reperfusion Injury via PTEN/Akt Pathway. PLoS ONE, 2013, 8, e75872.	2.5	114
52	Intraoperative Imaging of Tumors Using Cerenkov Luminescence Endoscopy: A Feasibility Experimental Study. Journal of Nuclear Medicine, 2012, 53, 1579-1584.	5.0	111
53	Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging. Scientific Reports, 2013, 3, 1490.	3.3	110
54	Hybrid Nanotrimers for Dual T1 and T2-Weighted Magnetic Resonance Imaging. ACS Nano, 2014, 8, 9884-9896.	14.6	106

#	Article	IF	CITATIONS
55	Fluorescent imaging of cancerous tissues for targeted surgery. Advanced Drug Delivery Reviews, 2014, 76, 21-38.	13.7	104
56	Small-Animal PET Imaging of Human Epidermal Growth Factor Receptor Type 2 Expression with Site-Specific 18F-Labeled Protein Scaffold Molecules. Journal of Nuclear Medicine, 2008, 49, 804-813.	5.0	102
57	Visualizing Implanted Tumors in Mice with Magnetic Resonance Imaging Using Magnetotactic Bacteria. Clinical Cancer Research, 2009, 15, 5170-5177.	7.0	101
58	Synergistically Enhancing the Therapeutic Effect of Radiation Therapy with Radiation Activatable and Reactive Oxygen Species-Releasing Nanostructures. ACS Nano, 2018, 12, 4946-4958.	14.6	101
59	A Selfâ€Assembled DNA Origamiâ€Gold Nanorod Complex for Cancer Theranostics. Small, 2015, 11, 5134-5141.	10.0	99
60	Fluorescent Fructose Derivatives for Imaging Breast Cancer Cells. Bioconjugate Chemistry, 2007, 18, 628-634.	3.6	98
61	Strained Cyclooctyne as a Molecular Platform for Construction of Multimodal Imaging Probes. Angewandte Chemie - International Edition, 2015, 54, 5981-5984.	13.8	97
62	Non-invasive Imaging of Idiopathic Pulmonary Fibrosis Using Cathepsin Protease Probes. Scientific Reports, 2016, 6, 19755.	3.3	97
63	Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chemical Science, 2017, 8, 3703-3711.	7.4	96
64	⁶⁴ Cu-Labeled Alpha-Melanocyte-Stimulating Hormone Analog for MicroPET Imaging of Melanocortin 1 Receptor Expression. Bioconjugate Chemistry, 2007, 18, 765-772.	3.6	94
65	Gadolinium-chelate functionalized bismuth nanotheranostic agent for inÂvivo MRI/CT/PAI imaging-guided photothermal cancer therapy. Biomaterials, 2018, 159, 37-47.	11.4	94
66	Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity. Science Advances, 2020, 6, eabc3646.	10.3	92
67	Excretable Lanthanide Nanoparticle for Biomedical Imaging and Surgical Navigation in the Second Nearâ€Infrared Window. Advanced Science, 2019, 6, 1902042.	11.2	88
68	Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window. Chemical Engineering Journal, 2020, 385, 123959.	12.7	86
69	Theranostics of Malignant Melanoma with ⁶⁴ CuCl ₂ . Journal of Nuclear Medicine, 2014, 55, 812-817.	5.0	85
70	One-step radiosynthesis of 18F-AlF-NOTA-RGD2 for tumor angiogenesis PET imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1732-1741.	6.4	83
71	A Novel Method for Direct Site-Specific Radiolabeling of Peptides Using [¹⁸ F]FDG. Bioconjugate Chemistry, 2009, 20, 432-436.	3.6	81
72	Preclinical Evaluation of Raman Nanoparticle Biodistribution for their Potential Use in Clinical Endoscopy Imaging. Small, 2011, 7, 2232-2240.	10.0	81

#	Article	IF	CITATIONS
73	Gold Nanoclusters for NIRâ€II Fluorescence Imaging of Bones. Small, 2020, 16, e2003851.	10.0	81
74	The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles. Biomaterials, 2012, 33, 5584-5592.	11.4	77
75	Enzymeâ€Responsive Multifunctional Magnetic Nanoparticles for Tumor Intracellular Drug Delivery and Imaging. Chemistry - an Asian Journal, 2011, 6, 1381-1389.	3.3	76
76	Activatable Near-Infrared Fluorescent Probe for <i>In Vivo</i> Imaging of Fibroblast Activation Protein-alpha. Bioconjugate Chemistry, 2012, 23, 1704-1711.	3.6	75
77	Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy. Biomaterials, 2014, 35, 5162-5170.	11.4	74
78	Evaluation of integrin αvβ6 cystine knot PET tracers to detect cancer and idiopathic pulmonary fibrosis. Nature Communications, 2019, 10, 4673.	12.8	73
79	Small-Animal PET Imaging of Human Epidermal Growth Factor Receptor Positive Tumor with a ⁶⁴ Cu Labeled Affibody Protein. Bioconjugate Chemistry, 2010, 21, 947-954.	3.6	71
80	Modification of the Structure of a Metallopeptide:Â Synthesis and Biological Evaluation of1111n-Labeled DOTA-Conjugated Rhenium-Cyclized α-MSH Analogues. Journal of Medicinal Chemistry, 2002, 45, 3048-3056.	6.4	70
81	Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging. Biomaterials, 2015, 69, 30-37.	11.4	70
82	Proof-of-Concept Study of Monitoring Cancer Drug Therapy with Cerenkov Luminescence Imaging. Journal of Nuclear Medicine, 2012, 53, 312-317.	5.0	68
83	A Comparative Study of Radiolabeled Bombesin Analogs for the PET Imaging of Prostate Cancer. Journal of Nuclear Medicine, 2013, 54, 2132-2138.	5.0	68
84	Tumor-Targeting Peptides: Ligands for Molecular Imaging and Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 74-86.	1.7	68
85	PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity. GigaScience, 2017, 6, 1-11.	6.4	67
86	Monitoring the Realâ€Time Circulatory Systemâ€Related Physiological and Pathological Processes In Vivo Using a Multifunctional NIRâ€II Probe. Advanced Functional Materials, 2020, 30, 1906343.	14.9	67
87	A phosphorescent probe for in vivo imaging in the second near-infrared window. Nature Biomedical Engineering, 2022, 6, 629-639.	22.5	67
88	Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids, 2011, 41, 1037-1047.	2.7	66
89	A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Science Translational Medicine, 2018, 10, .	12.4	66
90	Quaternary Ammonium Salt Based NIRâ€II Probes for In Vivo Imaging. Advanced Optical Materials, 2019, 7, 1900229.	7.3	66

#	Article	IF	CITATIONS
91	Epitope-specific monoclonal antibodies to FSHÎ ² increase bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2192-2197.	7.1	65
92	Small-Animal PET of Melanocortin 1 Receptor Expression Using a 18F-Labeled Â-Melanocyte-Stimulating Hormone Analog. Journal of Nuclear Medicine, 2007, 48, 987-994.	5.0	64
93	NIRâ€I Fluorescence Endoscopy for Targeted Imaging of Colorectal Cancer. Advanced Healthcare Materials, 2019, 8, e1900974.	7.6	63
94	NIRF Nanoprobes for Cancer Molecular Imaging: Approaching Clinic. Trends in Molecular Medicine, 2020, 26, 469-482.	6.7	63
95	Melanin-Targeted Preclinical PET Imaging of Melanoma Metastasis. Journal of Nuclear Medicine, 2009, 50, 1692-1699.	5.0	62
96	Molecular Targeted NIR-II Probe for Image-Guided Brain Tumor Surgery. Bioconjugate Chemistry, 2018, 29, 3833-3840.	3.6	62
97	A Dual-Labeled Knottin Peptide for PET and Near-Infrared Fluorescence Imaging of Integrin Expression in Living Subjects. Bioconjugate Chemistry, 2010, 21, 436-444.	3.6	61
98	Evaluation of a ⁶⁴ Cu-Labeled Cystine-Knot Peptide Based on Agouti-Related Protein for PET of Tumors Expressing α _v β ₃ Integrin. Journal of Nuclear Medicine, 2010, 51, 251-258.	5.0	59
99	A 2-Helix Small Protein Labeled with ⁶⁸ Ga for PET Imaging of <i>HER2</i> Expression. Journal of Nuclear Medicine, 2009, 50, 1492-1499.	5.0	58
100	Near-Infrared Quantum Dots as Optical Probes for Tumor Imaging. Current Topics in Medicinal Chemistry, 2010, 10, 1147-1157.	2.1	57
101	PET of EGFR Expression with an ¹⁸ F-Labeled Affibody Molecule. Journal of Nuclear Medicine, 2012, 53, 1110-1118.	5.0	55
102	Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. Nano-Micro Letters, 2020, 12, 38.	27.0	55
103	Radioiodination of Rhenium Cyclized α-Melanocyte-Stimulating Hormone Resulting in Enhanced Radioactivity Localization and Retention in Melanoma. Cancer Research, 2004, 64, 1411-1418.	0.9	54
104	64Cu-Labeled Affibody Molecules for Imaging of HER2 Expressing Tumors. Molecular Imaging and Biology, 2010, 12, 316-324.	2.6	54
105	Comparison of Two Site-Specifically ¹⁸ F-Labeled Affibodies for PET Imaging of EGFR Positive Tumors. Molecular Pharmaceutics, 2014, 11, 3947-3956.	4.6	54
106	Zwitterionic Manganese and Gadolinium Metal–Organic Frameworks as Efficient Contrast Agents for in Vivo Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2017, 9, 41378-41386.	8.0	54
107	Smart Self-Assembled Organic Nanoprobe for Protein-Specific Detection: Design, Synthesis, Application, and Mechanism Studies. Analytical Chemistry, 2017, 89, 10085-10093.	6.5	53
108	Acceptor engineering for NIR-II dyes with high photochemical and biomedical performance. Nature Communications, 2022, 13, .	12.8	53

#	Article	IF	CITATIONS
109	Endoscopic imaging of Cerenkov luminescence. Biomedical Optics Express, 2012, 3, 1215.	2.9	52
110	<i>In Vivo</i> Biodistribution and Small Animal PET of ⁶⁴ Cu-Labeled Antimicrobial Peptoids. Bioconjugate Chemistry, 2012, 23, 1069-1079.	3.6	51
111	In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows. Nano Today, 2021, 38, 101120.	11.9	51
112	Radioluminescent nanophosphors enable multiplexed small-animal imaging. Optics Express, 2012, 20, 11598.	3.4	50
113	Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2. Scientific Reports, 2015, 5, 13827.	3.3	50
114	Smart Selfâ€Assembly Amphiphilic Cyclopeptideâ€Dye for Nearâ€Infrared Windowâ€II Imaging. Advanced Materials, 2021, 33, e2006902.	21.0	50
115	Direct Site-Specific Radiolabeling of an Affibody Protein with 4-[18F]Fluorobenzaldehyde via Oxime Chemistry. Molecular Imaging and Biology, 2008, 10, 177-181.	2.6	49
116	Dynamic Visualization of RGDâ€Quantum Dot Binding to Tumor Neovasculature and Extravasation in Multiple Living Mouse Models Using Intravital Microscopy. Small, 2010, 6, 2222-2229.	10.0	49
117	¹⁸ F-Fluorobenzoate–Labeled Cystine Knot Peptides for PET Imaging of Integrin α _v β ₆ . Journal of Nuclear Medicine, 2013, 54, 1101-1105.	5.0	48
118	MicroRNA-22 Downregulation by Atorvastatin in a Mouse Model of Cardiac Hypertrophy: a new Mechanism for Antihypertrophic Intervention. Cellular Physiology and Biochemistry, 2013, 31, 997-1008.	1.6	48
119	Acid-Promoted D-A-D Type Far-Red Fluorescent Probe with High Photostability for Lysosomal Nitric Oxide Imaging. Analytical Chemistry, 2018, 90, 7953-7962.	6.5	48
120	PET Imaging of Translocator Protein (18 kDa) in a Mouse Model of Alzheimer's Disease Using <i>N</i> -(2,5-Dimethoxybenzyl)-2- ¹⁸ F-Fluoro- <i>N</i> -(2-Phenoxyphenyl)Acetamide. Journal of Nuclear Medicine, 2015, 56, 311-316.	5.0	47
121	Synthesis of the Cu-Doped Dual-Emission Fluorescent Carbon Dots and Its Analytical Application. Langmuir, 2018, 34, 9982-9989.	3.5	47
122	Biodegradable Silicaâ€Based Nanotheranostics for Precise MRI/NIRâ€II Fluorescence Imaging and Selfâ€Reinforcing Antitumor Therapy. Small, 2021, 17, e2006508.	10.0	46
123	PET of Malignant Melanoma Using ¹⁸ F-Labeled Metallopeptides. Journal of Nuclear Medicine, 2009, 50, 1865-1872.	5.0	45
124	An Engineered Knottin Peptide Labeled with ¹⁸ F for PET Imaging of Integrin Expression. Bioconjugate Chemistry, 2009, 20, 2342-2347.	3.6	45
125	Development of ¹⁸ F-Labeled Picolinamide Probes for PET Imaging of Malignant Melanoma. Journal of Medicinal Chemistry, 2013, 56, 895-901.	6.4	45
126	^{99m} Tc-Labeled Cystine Knot Peptide Targeting Integrin α _v β ₆ for Tumor SPECT Imaging. Molecular Pharmaceutics, 2014, 11, 1208-1217.	4.6	45

#	Article	IF	CITATIONS
127	Pd-catalyzed α-selective C(sp ³)–H acetoxylation of amides through an unusual cyclopalladation mechanism. Chemical Communications, 2015, 51, 3219-3222.	4.1	45
128	Bisdeoxycoelenterazine Derivatives for Improvement of Bioluminescence Resonance Energy Transfer Assays. Journal of the American Chemical Society, 2007, 129, 11900-11901.	13.7	44
129	Assessment and comparison of magnetic nanoparticles as MRI contrast agents in a rodent model of human hepatocellular carcinoma. Contrast Media and Molecular Imaging, 2012, 7, 363-372.	0.8	44
130	First 18F-labeled ligand for PET imaging of uPAR: In vivo studies in human prostate cancer xenografts. Nuclear Medicine and Biology, 2013, 40, 618-624.	0.6	44
131	Imaging chemically modified adenovirus for targeting tumors expressing integrin alphavbeta3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. Journal of Nuclear Medicine, 2006, 47, 130-9.	5.0	44
132	PET Imaging of Tumor Neovascularization in a Transgenic Mouse Model with a Novel 64Cu-DOTA-Knottin Peptide. Cancer Research, 2010, 70, 9022-9030.	0.9	43
133	SM5-1-Conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted hepatocellular carcinoma imaging and therapy. Biomaterials, 2014, 35, 2878-2889.	11.4	43
134	Design, synthesis and biological evaluation of mitochondria targeting theranostic agents. Chemical Communications, 2014, 50, 8919-8922.	4.1	43
135	Extracellular Matrix can Recover the Downregulation of Adhesion Molecules after Cell Detachment and Enhance Endothelial Cell Engraftment. Scientific Reports, 2015, 5, 10902.	3.3	43
136	Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging. Chemical Science, 2019, 10, 7946-7951.	7.4	43
137	Engineering single-atom catalysts toward biomedical applications. Chemical Society Reviews, 2022, 51, 3688-3734.	38.1	43
138	Non-Invasive Imaging of Cysteine Cathepsin Activity in Solid Tumors Using a 64Cu-Labeled Activity-Based Probe. PLoS ONE, 2011, 6, e28029.	2.5	42
139	Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials, 2016, 103, 265-277.	11.4	42
140	An NIR-II/MR dual modal nanoprobe for liver cancer imaging. Nanoscale, 2020, 12, 11510-11517.	5.6	41
141	Enhanced immunotherapy of SM5-1 in hepatocellular carcinoma by conjugating with gold nanoparticles and its inAvivo bioluminescence tomographic evaluation. Biomaterials, 2016, 87, 46-56.	11.4	40
142	Cy5.5-labeled Affibody molecule for near-infrared fluorescent optical imaging of epidermal growth factor receptor positive tumors. Journal of Biomedical Optics, 2010, 15, 036007.	2.6	39
143	Cerenkov Luminescence Endoscopy: Improved Molecular Sensitivity with β ^{â^'} -Emitting Radiotracers. Journal of Nuclear Medicine, 2014, 55, 1905-1909.	5.0	39
144	Imaging of hepatocellular carcinoma patient-derived xenografts using 89Zr-labeled anti-glypican-3 monoclonal antibody. Biomaterials, 2014, 35, 6964-6971.	11.4	39

#	Article	IF	CITATIONS
145	Dual-Modality Activity-Based Probes as Molecular Imaging Agents for Vascular Inflammation. Journal of Nuclear Medicine, 2016, 57, 1583-1590.	5.0	39
146	A proof-of-concept application of water-soluble ytterbium(<scp>iii</scp>) molecular probes in <i>in vivo</i> NIR-II whole body bioimaging. Inorganic Chemistry Frontiers, 2019, 6, 1962-1967.	6.0	39
147	Dysregulated integrin αVβ3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis. JCI Insight, 2019, 4, .	5.0	39
148	Photoactivable bioluminescent probes for imaging luciferase activity. Chemical Communications, 2009, , 4028.	4.1	38
149	Evaluation of Four Affibody-Based Near-Infrared Fluorescent Probes for Optical Imaging of Epidermal Growth Factor Receptor Positive Tumors. Bioconjugate Chemistry, 2012, 23, 1149-1156.	3.6	38
150	FRET-enabled monitoring of the thermosensitive nanoscale assembly of polymeric micelles into macroscale hydrogel and sequential cognate micelles release. Biomaterials, 2017, 145, 81-91.	11.4	38
151	Functional Mutation of Multiple Solvent-Exposed Loops in the Ecballium elaterium Trypsin Inhibitor-II Cystine Knot Miniprotein. PLoS ONE, 2011, 6, e16112.	2.5	37
152	Hexametaphosphate-capped quantum dots as fluorescent probes for detection of calcium ion and fluoride. Sensors and Actuators B: Chemical, 2016, 232, 306-312.	7.8	37
153	Highly selective fluorescent visual detection of perfluorooctane sulfonate via blue fluorescent carbon dots and berberine chloride hydrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 262-269.	3.9	37
154	"Sample-to-Answer―Detection of Rare ctDNA Mutation from 2 mL Plasma with a Fully Integrated DNA Extraction and Digital Droplet PCR Microdevice for Liquid Biopsy. Analytical Chemistry, 2020, 92, 7240-7248.	6.5	37
155	Clickable, Hydrophilic Ligand for <i>fac-</i> [M ^I (CO) ₃] ⁺ (M =) Tj ETQq1 1 25, 579-592.	0.784314 3.6	rgBT /Over 36
156	⁶⁴ Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques. Journal of Nuclear Medicine, 2015, 56, 939-944.	5.0	36
157	Macrophages as a potential tumor-microenvironment target for noninvasive imaging of early response to anticancer therapy. Biomaterials, 2018, 152, 63-76.	11.4	36
158	Affibody-functionalized Ag ₂ S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale, 2018, 10, 16581-16590.	5.6	35
159	Development of a Novel Histone Deacetylase-Targeted Near-Infrared Probe for Hepatocellular Carcinoma Imaging and Fluorescence Image-Guided Surgery. Molecular Imaging and Biology, 2020, 22, 476-485.	2.6	35
160	First-in-class humanized FSH blocking antibody targets bone and fat. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28971-28979.	7.1	35
161	A Highly Specific Multiple Enhancement Theranostic Nanoprobe for PET/MRI/PAI Imageâ€Guided Radioisotope Combined Photothermal Therapy in Prostate Cancer. Small, 2021, 17, e2100378. 	10.0	35
162	Radiolabeled Affibodyâ^'Albumin Bioconjugates for <i>HER2</i> -Positive Cancer Targeting. Bioconjugate Chemistry, 2011, 22, 413-421.	3.6	34

#	Article	IF	CITATIONS
163	Synthesis, antiproliferative activity and mechanism of gallium(III)-thiosemicarbazone complexes as potential anti-breast cancer agents. European Journal of Medicinal Chemistry, 2018, 154, 91-100.	5.5	34
164	Engineered Twoâ€Helix Small Proteins for Molecular Recognition. ChemBioChem, 2009, 10, 1293-1296.	2.6	33
165	Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes. Biomaterials, 2014, 35, 7511-7521.	11.4	33
166	Tumor Molecular Imaging with Nanoparticles. Engineering, 2016, 2, 132-140.	6.7	33
167	Polydopamine-coated downconversion nanoparticle as an efficient dual-modal near-infrared-II fluorescence and photoacoustic contrast agent for non-invasive visualization of gastrointestinal tract in vivo. Biosensors and Bioelectronics, 2020, 151, 112000.	10.1	33
168	Optical imaging of reporter gene expression using a positron-emission-tomography probe. Journal of Biomedical Optics, 2010, 15, 060505.	2.6	32
169	Chelator-Free and Biocompatible Melanin Nanoplatform with Facile-Loading Gadolinium and Copper-64 for Bioimaging. Bioconjugate Chemistry, 2017, 28, 1925-1930.	3.6	32
170	Preliminary evaluation of 177Lu-labeled knottin peptides for integrin receptor-targeted radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 613-622.	6.4	31
171	Hierarchically Nanostructured Hybrid Platform for Tumor Delineation and Imageâ€Guided Surgery via NIRâ€II Fluorescence and PET Bimodal Imaging. Small, 2019, 15, e1903382.	10.0	31
172	Reproducibility of 3'-deoxy-3'-(18)F-fluorothymidine microPET studies in tumor xenografts in mice. Journal of Nuclear Medicine, 2005, 46, 1851-7.	5.0	31
173	[99mTcOAADT]-(CH2)2-NEt2: A Potential Small-Molecule Single-Photon Emission Computed Tomography Probe for Imaging Metastatic Melanoma. Cancer Research, 2005, 65, 4979-4986.	0.9	30
174	In Vivo Bioluminescence Tumor Imaging of RGD Peptide-modified Adenoviral Vector Encoding Firefly Luciferase Reporter Gene. Molecular Imaging and Biology, 2007, 9, 126-134.	2.6	30
175	PET Imaging of Integrin Positive Tumors Using ¹⁸ F Labeled Knottin Peptides. Theranostics, 2011, 1, 403-412.	10.0	30
176	Evaluation of 89Zr-rituximab Tracer by Cerenkov Luminescence Imaging and Correlation with PET in a Humanized Transgenic Mouse Model to Image NHL. Molecular Imaging and Biology, 2013, 15, 468-475.	2.6	30
177	A novel Affibody bioconjugate for dual-modality imaging of ovarian cancer. Chemical Communications, 2014, 50, 12832-12835.	4.1	30
178	Microfluidic fluorescence-activated cell sorting (μFACS) chip with integrated piezoelectric actuators for low-cost mammalian cell enrichment. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	30
179	An IR820 Dye–Protein Complex for Second Nearâ€Infrared Window and Photoacoustic Imaging. Advanced Optical Materials, 2020, 8, 1901471.	7.3	30
180	A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications. Applied Physics Letters, 2012, 100, .	3.3	29

#	Article	IF	CITATIONS
181	Ligand-promoted ruthenium-catalyzed <i>meta</i> C–H chlorination of arenes using <i>N</i> -chloro-2,10-camphorsultam. Chemical Communications, 2018, 54, 6008-6011.	4.1	29
182	Synthesis of (4-[18F]fluorophenyl)triphenylphosphonium as a potential imaging agent for mitochondrial dysfunction. Journal of Labelled Compounds and Radiopharmaceuticals, 2005, 48, 131-137.	1.0	28
183	Near-Infrared Window II Fluorescence Image-Guided Surgery of High-Grade Gliomas Prolongs the Progression-Free Survival of Patients. IEEE Transactions on Biomedical Engineering, 2022, 69, 1889-1900.	4.2	28
184	?-melanocyte-stimulating hormone peptide analogs labeled with technetium-99m and indium-111 for malignant melanoma targeting. Cancer, 2002, 94, 1196-1201.	4.1	27
185	Synthesis of porous and nonporous ZnO nanobelt, multipod, and hierarchical nanostructure from Zn-HDS. Journal of Solid State Chemistry, 2010, 183, 1835-1840.	2.9	27
186	Near Infrared Receptor-Targeted Nanoprobes for Early Diagnosis of Cancers. Current Medicinal Chemistry, 2012, 19, 4767-4785.	2.4	27
187	Preclinical Study on GRPR-Targeted 68Ga-Probes for PET Imaging of Prostate Cancer. Bioconjugate Chemistry, 2016, 27, 1857-1864.	3.6	27
188	Recyclable Cu(<scp>i</scp>)/melanin dots for cycloaddition, bioconjugation and cell labelling. Chemical Science, 2016, 7, 5888-5892.	7.4	27
189	Lasso peptide, a highly stable structure and designable multifunctional backbone. Amino Acids, 2016, 48, 1347-1356.	2.7	27
190	An erythrosin B-based "turn on―fluorescent sensor for detecting perfluorooctane sulfonate and perfluorooctanoic acid in environmental water samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 281-287.	3.9	27
191	Multimodality imaging of naturally active melanin nanoparticles targeting somatostatin receptor subtype 2 in human small-cell lung cancer. Nanoscale, 2019, 11, 14400-14409.	5.6	27
192	Structureâ^'activity relationships of 2‑quinolinecarboxaldehyde thiosemicarbazone gallium(III) complexes with potent and selective anticancer activity. Journal of Inorganic Biochemistry, 2019, 191, 174-182.	3.5	27
193	Human Serum Albumin Conjugated Biomolecules for Cancer Molecular Imaging. Current Pharmaceutical Design, 2012, 18, 1023-1031.	1.9	26
194	Highly sensitive and selective detection of perfluorooctane sulfonate based on the Janus Green B resonance light scattering method. Analytical Methods, 2016, 8, 8042-8048.	2.7	26
195	Novel 2-pyridinecarboxaldehyde thiosemicarbazones Ga(III) complexes with a high antiproliferative activity by promoting apoptosis and inhibiting cell cycle. European Journal of Medicinal Chemistry, 2017, 134, 34-42.	5.5	26
196	Impact of a Multiple Mice Holder on Quantitation of High-Throughput MicroPET Imaging With and Without Ct Attenuation Correction. Molecular Imaging and Biology, 2013, 15, 569-575.	2.6	25
197	Upconversion nanocomposites for photo-based cancer theranostics. Journal of Materials Chemistry B, 2016, 4, 5331-5348.	5.8	25
198	Biodistribution, Radiation Dosimetry, and Clinical Application of a Melanin-Targeted PET Probe, ¹⁸ F-P3BZA, in Patients. Journal of Nuclear Medicine, 2019, 60, 16-22.	5.0	25

#	Article	IF	CITATIONS
199	Adipose tissueâ€derived stem cells display a proangiogenic phenotype on 3D scaffolds. Journal of Biomedical Materials Research - Part A, 2011, 98A, 383-393.	4.0	24
200	Optical Imaging with Her2-Targeted Affibody Molecules Can Monitor Hsp90 Treatment Response in a Breast Cancer Xenograft Mouse Model. Clinical Cancer Research, 2012, 18, 1073-1081.	7.0	24
201	PET imaging of insulin-like growth factor type 1 receptor expression with a 64Cu-labeled Affibody molecule. Amino Acids, 2015, 47, 1409-1419.	2.7	24
202	18F-FAZA PET Imaging Response Tracks the Reoxygenation of Tumors in Mice upon Treatment with the Mitochondrial Complex I Inhibitor BAY 87-2243. Clinical Cancer Research, 2015, 21, 335-346.	7.0	24
203	Gallium(<scp>iii</scp>)–2-benzoylpyridine-thiosemicarbazone complexes promote apoptosis through Ca ²⁺ signaling and ROS-mediated mitochondrial pathways. New Journal of Chemistry, 2018, 42, 10226-10233.	2.8	24
204	Recent Progress in Radiofluorination of Peptides for PET Molecular Imaging. Current Organic Synthesis, 2011, 8, 584-592.	1.3	23
205	Novel, Cysteine-Modified Chelation Strategy for the Incorporation of [M ^I (CO) ₃] ⁺ (M = Re, ^{99m} Tc) in an α-MSH Peptide. Bioconjugate Chemistry, 2012, 23, 2300-2312.	3.6	23
206	Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging. Small, 2015, 11, 4002-4008.	10.0	23
207	Visualization of Diagnostic and Therapeutic Targets in Glioma With Molecular Imaging. Frontiers in Immunology, 2020, 11, 592389.	4.8	23
208	Novel ⁶⁴ Cu Labeled RGD ₂ -BBN Heterotrimers for PET Imaging of Prostate Cancer. Bioconjugate Chemistry, 2018, 29, 1595-1604.	3.6	22
209	Mitochondria-targeted delocalized lipophilic cation complexed with human serum albumin for tumor cell imaging and treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102087.	3.3	22
210	Radiofluorinated Rhenium Cyclized α-MSH Analogues for PET Imaging of Melanocortin Receptor 1. Bioconjugate Chemistry, 2010, 21, 2355-2360.	3.6	21
211	Molecular Imaging of Hepatocellular Carcinoma Xenografts with Epidermal Growth Factor Receptor Targeted Affibody Probes. BioMed Research International, 2013, 2013, 1-11.	1.9	21
212	Pilot Study of 64Cu(I) for PET Imaging of Melanoma. Scientific Reports, 2017, 7, 2574.	3.3	21
213	The Advancement of Human Serum Albumin-Based Molecular Probes for Molecular Imaging. Current Pharmaceutical Design, 2015, 21, 1908-1915.	1.9	21
214	Optical Image-Guided Cancer Therapy. Current Pharmaceutical Biotechnology, 2014, 14, 723-732.	1.6	21
215	PET probes beyond 18F-FDG. Journal of Biomedical Research, 2014, 28, 435.	1.6	21
216	In vivo imaging of embryonic stem cell therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 774-784.	6.4	20

#	Article	IF	CITATIONS
217	Imageâ€guided resection of malignant gliomas using ï¬,uorescent nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 219-232.	6.1	20
218	Cerenkov radiation: a multi-functional approach for biological sciences. Frontiers in Physics, 2014, 2, .	2.1	20
219	Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging. Nanoscale, 2016, 8, 19644-19653.	5.6	20
220	Preparation of magnetic molecularly imprinted polymers for the rapid and selective separation and enrichment of perfluorooctane sulfonate. Journal of Separation Science, 2017, 40, 2819-2826.	2.5	20
221	A Novel Estrogen Receptor α-Targeted Near-Infrared Fluorescent Probe for in Vivo Detection of Breast Tumor. Molecular Pharmaceutics, 2018, 15, 4702-4709.	4.6	20
222	Enhancing Photoacoustic Intensity of Upconversion Nanoparticles by Photoswitchable Azobenzeneâ€Containing Polymers for Dual NIRâ€II and Photoacoustic Imaging In Vivo. Advanced Optical Materials, 2019, 7, 1900045.	7.3	20
223	Tuning the near infrared II emitting wavelength of small molecule dyes by single atom alteration. Chemical Communications, 2020, 56, 523-526.	4.1	20
224	A thiopyrylium salt for PET/NIRâ€I tumor imaging and imageâ€guided surgery. Molecular Oncology, 2020, 14, 1089-1100.	4.6	20
225	A new strategy to screen molecular imaging probe uptake in cell culture without radiolabeling using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Nuclear Medicine, 2005, 46, 878-86.	5.0	20
226	A Novel Aliphatic 18F-Labeled Probe for PET Imaging of Melanoma. Molecular Pharmaceutics, 2013, 10, 3384-3391.	4.6	19
227	In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Scientific Reports, 2017, 7, 9309.	3.3	19
228	Effective tracking of bone mesenchymal stem cells <i>in vivo</i> by magnetic resonance imaging using melaninâ€based gadolinium ³⁺ nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 131-137.	4.0	19
229	Multimodality Molecular Imaging to Monitor Transplanted Stem Cells for the Treatment of Ischemic Heart Disease. PLoS ONE, 2014, 9, e90543.	2.5	19
230	Molecular Probes for Malignant Melanoma Imaging. Current Pharmaceutical Biotechnology, 2010, 11, 590-602.	1.6	19
231	1064Ânm activatable semiconducting polymer-based nanoplatform for NIR-II fluorescence/NIR-II photoacoustic imaging guided photothermal therapy of orthotopic osteosarcoma. Chemical Engineering Journal, 2022, 445, 136836.	12.7	19
232	Synthesis, crystal structure and antiproliferative mechanisms of 2-acetylpyridine-thiosemicarbazones Ga(III) with a greater selectivity against tumor cells. Journal of Inorganic Biochemistry, 2017, 177, 110-117.	3.5	18
233	PET Imaging of HER2-Positive Tumors with Cu-64-Labeled Affibody Molecules. Molecular Imaging and Biology, 2019, 21, 907-916.	2.6	18
234	Organic single molecule based nano-platform for NIR-II imaging and chemo-photothermal synergistic treatment of tumor. Biomaterials, 2022, 287, 121670.	11.4	18

#	Article	IF	CITATIONS
235	A multimodality reporter gene for monitoring transplanted stem cells. Nuclear Medicine and Biology, 2012, 39, 813-820.	0.6	17
236	Development of a Novel Ferrocenyl Histone Deacetylase Inhibitor for Triple-Negative Breast Cancer Therapy. Organometallics, 2018, 37, 2368-2375.	2.3	17
237	Dynamic transition between Zn-HDS and ZnO; growth and dissolving mechanism of dumbbell-like ZnO bipod crystal. CrystEngComm, 2011, 13, 546-552.	2.6	16
238	Ferritin Enhances SPIO Tracking of C6 Rat Glioma Cells by MRI. Molecular Imaging and Biology, 2011, 13, 87-93.	2.6	16
239	Preparation of mesoporous silica nanoparticles molecularly imprinted polymer for efficient separation and enrichment of perfluorooctane sulfonate. Journal of Separation Science, 2018, 41, 4363-4369.	2.5	16
240	Controlled Nano–Bio Interface of Functional Nanoprobes for in Vivo Monitoring Enzyme Activity in Tumors. ACS Nano, 2019, 13, 1153-1167.	14.6	16
241	<i>In vivo</i> live imaging of bone using shortwave infrared fluorescent quantum dots. Nanoscale, 2020, 12, 22022-22029.	5.6	16
242	Reactive oxygen species and enzyme dual-responsive biocompatible drug delivery system for targeted tumor therapy. Journal of Controlled Release, 2020, 324, 330-340.	9.9	16
243	64Cu-labeled melanin nanoparticles for PET/CT and radionuclide therapy of tumor. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102248.	3.3	16
244	In vitro and in vivo direct monitoring of miRNA-22 expression in isoproterenol-induced cardiac hypertrophy by bioluminescence imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 972-984.	6.4	15
245	A Radiofluorinated Divalent Cystine Knot Peptide for Tumor PET Imaging. Molecular Pharmaceutics, 2014, 11, 3885-3892.	4.6	15
246	Design, synthesis and pharmacological evaluation of 2-(thiazol-2-amino)-4-arylaminopyrimidines as potent anaplastic lymphoma kinase (ALK) inhibitors. European Journal of Medicinal Chemistry, 2014, 86, 438-448.	5.5	15
247	Gold nanoparticles for cancer theranostics — A brief update. Journal of Innovative Optical Health Sciences, 2016, 09, 1630004.	1.0	15
248	Protein scaffolds: antibody alternatives for cancer diagnosis and therapy. RSC Chemical Biology, 2022, 3, 830-847.	4.1	15
249	β-Radioluminescence Imaging: A Comparative Evaluation with Cerenkov Luminescence Imaging. Journal of Nuclear Medicine, 2015, 56, 1458-1464.	5.0	14
250	Multimodality Molecular Imaging of Cardiovascular Disease Based on Nanoprobes. Cellular Physiology and Biochemistry, 2018, 48, 1401-1415.	1.6	14
251	Synergistic strategy of rare-earth doped nanoparticles for NIR-II biomedical imaging. Journal of Materials Chemistry B, 2021, 9, 9116-9122.	5.8	14
252	Development and validation of a clinically applicable deep learning strategy (HONORS) for pulmonary nodule classification at CT: A retrospective multicentre study. Lung Cancer, 2021, 155, 78-86.	2.0	14

#	Article	IF	CITATIONS
253	PET/NIR-II fluorescence imaging and image-guided surgery of glioblastoma using a folate receptor α-targeted dual-modal nanoprobe. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 4325-4337.	6.4	14
254	A novel 18F-labeled two-helix scaffold protein for PET imaging of HER2-positive tumor. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1977-1984.	6.4	13
255	Fluorine-18 labeling by click chemistry: Multiple probes in one pot. Applied Radiation and Isotopes, 2013, 75, 64-70.	1.5	13
256	Up-regulated isocitrate dehydrogenase 1 suppresses proliferation, migration and invasion in osteosarcoma: In vitro and in vivo. Cancer Letters, 2014, 346, 114-121.	7.2	13
257	A selenium-containing selective histone deacetylase 6 inhibitor for targeted <i>in vivo</i> breast tumor imaging and therapy. Journal of Materials Chemistry B, 2019, 7, 3528-3536.	5.8	13
258	Copper(II)-disulfiram loaded melanin-dots for cancer theranostics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102340.	3.3	13
259	Azide-Dye Unexpected Bone Targeting for Near-Infrared Window II Osteoporosis Imaging. Journal of Medicinal Chemistry, 2021, 64, 11543-11553.	6.4	13
260	A novel NIR-II nanoprobe for precision imaging of micro-meter sized tumor metastases of multi-organs and skin flap. Chemical Engineering Journal, 2022, 449, 137848.	12.7	13
261	Reproducibility study of [18F]FPP(RGD)2 uptake in murine models of human tumor xenografts. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 722-730.	6.4	12
262	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>I</mml:mtext><mml:mrow><mml:mtext>1 Cystine-Knot Peptides Based on the Agouti-Related Protein for Targeting Tumor Angiogenesis. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.</mml:mtext></mml:mrow></mml:math 	113.0	ntext>12
263	177Lu-labeled RGD-BBN heterodimeric peptide for targeting prostate carcinoma. Nuclear Medicine Communications, 2013, 34, 909-914.	1.1	12
264	Intrastriatal Transplantation of Retinal Pigment Epithelial Cells for the Treatment of Parkinson Disease: In Vivo Longitudinal Molecular Imaging with ¹⁸ F-P3BZA PET/CT. Radiology, 2014, 272, 174-183.	7.3	12
265	Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Research, 2017, 7, 41.	2.5	12
266	High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns. IEEE Photonics Journal, 2017, 9, 1-11.	2.0	12
267	Dual T 1 and T 2 weighted magnetic resonance imaging based on Gd 3+ loaded bioinspired melanin dots. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1743-1752.	3.3	12
268	Gallium(III) complexes of α- N -heterocyclic piperidylthiosemicarbazones: Synthesis, structure-activity relationship, cellular uptake and activation of caspases-3/7/9. Journal of Inorganic Biochemistry, 2018, 186, 42-50.	3.5	12
269	Aggregationâ€Induced Phosphorescent Imaging in the Second Nearâ€Infrared Window. Advanced Optical Materials, 2021, 9, .	7.3	12
270	A "Dualâ€Source, Dualâ€Activation―Strategy for an NIRâ€II Window Theranostic Nanosystem Enabling Optimal Photothermalâ€Ion Combination Therapy. Small, 2022, 18, .	10.0	12

#	Article	IF	CITATIONS
271	A sensitive three-signal assay for the determination of PFOS based on the interaction with Nile blue A. Analytical Methods, 2018, 10, 3052-3058.	2.7	11
272	Evaluation of a smart activatable MRI nanoprobe to target matrix metalloproteinases in the early-stages of abdominal aortic aneurysms. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 26, 102177.	3.3	11
273	In vivo targeting of HER2-positive tumor using 2-helix affibody molecules. Amino Acids, 2012, 43, 405-413.	2.7	10
274	A novel radiofluorinated agouti-related protein for tumor angiogenesis imaging. Amino Acids, 2013, 44, 673-681.	2.7	10
275	Grand challenges in biomedical physics. Frontiers in Physics, 2013, 1, .	2.1	10
276	Fine tuning the assembly and gel behaviors of <scp>PEG</scp> ylated polypeptide conjugates by the copolymerization of <scp>l</scp> â€alanine and γâ€benzylâ€ <scp>l</scp> â€glutamate <scp><i>N</i></scp> â€carboxyanhydrides. Journal of Polymer Science Part A, 2017, 55, 1512-1523.	2.3	10
277	Liver injury long-term monitoring and fluorescent image-guided tumor surgery using self-assembly amphiphilic donor-acceptor NIR-II dyes. Biosensors and Bioelectronics, 2022, 212, 114371.	10.1	10
278	Macrocyclic chelator assembled RGD multimers for tumor targeting. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3423-3426.	2.2	9
279	Study of Vesicular Monoamine Transporter 2 in Myopic Retina Using [18F]FP-(+)-DTBZ. Molecular Imaging and Biology, 2018, 20, 771-779.	2.6	9
280	Detecting Vulnerable Atherosclerotic Plaques by ⁶⁸ Ga-Labeled Divalent Cystine Knot Peptide. Molecular Pharmaceutics, 2019, 16, 1350-1357.	4.6	9
281	Molecular Probes for Bioluminescence Imaging. Current Organic Synthesis, 2011, 8, 488-497.	1.3	8
282	A Four-Arm Star-Shaped Poly(ethylene glycol) (StarPEG) Platform for Bombesin Peptide Delivery to Gastrin-Releasing Peptide Receptors in Prostate Cancer. ACS Macro Letters, 2012, 1, 753-757.	4.8	8
283	Analysis of in situ and ex vivo αVß3 integrin expression during experimental carotid atherogenesis. International Journal of Nanomedicine, 2012, 7, 641.	6.7	8
284	177Lu–DO3A–HSA–ZEGFR:1907: characterization as a potential radiopharmaceutical for radionuclide therapy of EGFR-expressing head and neck carcinomas. Journal of Biological Inorganic Chemistry, 2012, 17, 709-718.	2.6	8
285	Facile synthesis of near infrared fluorescent trypsin-stabilized Ag nanoclusters with tunable emission for 1,4-dihydronicotinamide adenine dinucleotide and ethanol sensing. Analytica Chimica Acta, 2015, 886, 151-156.	5.4	8
286	Smallâ€Proteinâ€Stabilized Semiconductor Nanoprobe for Targeted Imaging of Cancer Cells. ChemBioChem, 2016, 17, 1202-1206.	2.6	8
287	Isothiocyanate-Functionalized Bifunctional Chelates and <i>fac</i> -[M ^I (CO) ₃] ⁺ (M = Re, ^{99m} Tc) Complexes for Targeting uPAR in Prostate Cancer. Bioconjugate Chemistry, 2016, 27, 130-142.	3.6	8
288	<pre>¹⁸Fâ€FDG PET/<scp>CT</scp> imaging of small intestinal metastasis from pulmonary sarcomatoid carcinoma: Brief report and review of the literature. Thoracic Cancer, 2020, 11, 2325-2330.</pre>	1.9	8

#	Article	IF	CITATIONS
289	Radionuclide-Labeled Peptides for Imaging and Treatment of CXCR4- Overexpressing Malignant Tumors. Current Topics in Medicinal Chemistry, 2019, 19, 17-32.	2.1	8
290	Radiolabeled Peptide Probes for Liver Cancer Imaging. Current Medicinal Chemistry, 2020, 27, 6968-6986.	2.4	8
291	NIR-II imaging of hepatocellular carcinoma based on a humanized anti-GPC3 antibody. RSC Medicinal Chemistry, 2022, 13, 90-97.	3.9	8
292	Development of Mitochondria-Targeted Small-Molecule Dyes for Myocardial PET and Fluorescence Bimodal Imaging. Journal of Medicinal Chemistry, 2022, 65, 497-506.	6.4	8
293	Continuous sensing of tumor-targeted molecular probes with a vertical cavity surface emitting laser-based biosensor. Journal of Biomedical Optics, 2012, 17, 117004.	2.6	7
294	Flexible radioluminescence imaging for FDGâ€guided surgery. Medical Physics, 2016, 43, 5298-5306.	3.0	7
295	Improved positron emission tomography imaging of glioblastoma cancer using novel 68Ca-labeled peptides targeting the urokinase-type plasminogen activator receptor (uPAR). Amino Acids, 2017, 49, 1089-1100.	2.7	7
296	Pilot Study of 64CuCl2 for PET Imaging of Inflammation. Molecules, 2018, 23, 502.	3.8	7
297	Synthesis, anticancer activity and mechanism of iron chelator derived from 2,6-diacetylpyridine bis(acylhydrazones). Journal of Inorganic Biochemistry, 2019, 193, 1-8.	3.5	7
298	Non-Invasive Photoacoustic Imaging of In Vivo Mice with Erythrocyte Derived Optical Nanoparticles to Detect CAD/MI. Scientific Reports, 2020, 10, 5983.	3.3	7
299	Novel anilino quinazoline-based EGFR tyrosine kinase inhibitors for treatment of non-small cell lung cancer. Biomaterials Science, 2021, 9, 443-455.	5.4	7
300	Differential Responses of Transplanted Stem Cells to Diseased Environment Unveiled by a Molecular NIR-II Cell Tracker. Research, 2021, 2021, 9798580.	5.7	7
301	Imaging of Hepatic Ectopic Pregnancy by 18F-FDG PET/CT. Clinical Nuclear Medicine, 2016, 41, 697-698.	1.3	6
302	Multimodality Hyperpolarized C-13 MRS/PET/Multiparametric MR Imaging for Detection and Image-Guided Biopsy of Prostate Cancer: First Experience in a Canine Prostate Cancer Model. Molecular Imaging and Biology, 2019, 21, 861-870.	2.6	6
303	Evaluation of a novel monoclonal antibody mAb109 by immuno-PET/fluorescent imaging for noninvasive lung adenocarcinoma diagnosis. Acta Pharmacologica Sinica, 2020, 41, 101-109.	6.1	6
304	FDG PET/CT in Monitoring Antituberculosis Therapy in Patient With Widespread Skeletal Tuberculosis. Clinical Nuclear Medicine, 2015, 40, 919-921.	1.3	5
305	The Optimal Outcome of Suppressing Ewing Sarcoma Growth in vivo With Biocompatible Bioengineered miR-34a-5p Prodrug. Frontiers in Oncology, 2020, 10, 222.	2.8	5
306	Medical Physics and Imaging–A Timely Perspective. Frontiers in Physics, 2021, 9, .	2.1	5

#	Article	IF	CITATIONS
307	Photoacoustic detection of follicular thyroid carcinoma using targeted Nano-Au-Tripods. Chinese Journal of Chemical Engineering, 2022, 44, 1-7.	3.5	5
308	Molecular Image-Guided Theranostic and Personalized Medicine. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-1.	3.0	4
309	Cerenkov Luminescence Imaging (CLI) for Cancer Therapy Monitoring. Journal of Visualized Experiments, 2012, , e4341.	0.3	4
310	Drug Delivery: Engineering Melanin Nanoparticles as an Efficient Drug–Delivery System for Imagingâ€Guided Chemotherapy (Adv. Mater. 34/2015). Advanced Materials, 2015, 27, 5092-5092.	21.0	4
311	Photoacoustic Imaging: Perylene-Diimide-Based Nanoparticles as Highly Efficient Photoacoustic Agents for Deep Brain Tumor Imaging in Living Mice (Adv. Mater. 5/2015). Advanced Materials, 2015, 27, 774-774.	21.0	4
312	18F-FDG PET/CT of Primary Mediastinal Hepatoid Adenocarcinoma. Clinical Nuclear Medicine, 2016, 41, 321-322.	1.3	4
313	Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823). Genome Announcements, 2016, 4, .	0.8	4
314	Synthesis and Application of a Long-Circulating Radiolabeled Peptide for Targeting of Osteosarcoma. Molecular Imaging and Biology, 2020, 22, 940-947.	2.6	4
315	Molecular Imaging in Targeted Therapeutics. Contrast Media and Molecular Imaging, 2018, 2018, 1-2.	0.8	3
316	Advancements of Second Near-Infrared Biological Window Fluorophores: Mechanism, Synthesis, and Application In Vivo. Topics in Medicinal Chemistry, 2019, , 81-123.	0.8	3
317	Bone Imaging: Gold Nanoclusters for NIRâ€II Fluorescence Imaging of Bones (Small 43/2020). Small, 2020, 16, 2070237.	10.0	3
318	Small Peptide and Protein-based Molecular Probes for Imaging Neurological Diseases. Current Protein and Peptide Science, 2016, 17, 543-558.	1.4	3
319	Preparation and Preliminary Molecular Imaging Study of 124I in-situ Labeled Organic Melanin Nanoparticles. Acta Chimica Sinica, 2019, 77, 172.	1.4	3
320	Dermatopathic Lymphadenitis. Chinese Medical Journal, 2015, 128, 3121-3122.	2.3	2
321	Fluorescent Probes. , 2015, , 29-53.		2
322	PET Imaging of Melanoma Using Melanin-Targeted Probe. Methods in Molecular Biology, 2021, 2265, 407-416.	0.9	2
323	Synthesis of [18F]FPPRGD2. , 0, , 51-60.		2
324	An active-passive strategy for enhanced synergistic photothermal-ferroptosis therapy in the NIR-I/II biowindows. Biomaterials Science, 2022, 10, 1104-1112.	5.4	2

#	Article	IF	CITATIONS
325	Real-time visualization of RGD-quantum dot binding in tumor neovasculature using intravital microscopy in multiple living mouse models. Proceedings of SPIE, 2009, , .	0.8	1
326	Inside Back Cover: Inâ€Vitro and Inâ€Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles (Angew. Chem. Int. Ed. 13/2012). Angewandte Chemie - International Edition, 2012, 51, 3275-3275.	13.8	1
327	A convenient and efficient solid phase extraction-based pathway for purification of melanin-targeted probe 18F-P3BZA. Microchemical Journal, 2021, 164, 106008.	4.5	1
328	Auditory Display of Fluorescence Image Data in an In Vivo Tumor Model. Diagnostics, 2022, 12, 1728.	2.6	1
329	A NEAR-INFRARED FLUORESCENT DEOXYGLUCOSE DERIVATIVE FOR OPTICAL IMAGING OF EXPERIMENTAL ARTHRITIS. Journal of Innovative Optical Health Sciences, 2009, 02, 179-187.	1.0	0
330	Quantum dots: Dynamic Visualization of RGD-Quantum Dot Binding to Tumor Neovasculature and Extravasation in Multiple Living Mouse Models Using Intravital Microscopy (Small 20/2010). Small, 2010, 6, n/a-n/a.	10.0	0
331	General Principles of Molecular Imaging Probe Design. , 2012, , 129-147.		0
332	Diagnostic Applications. , 2012, , 265-284.		0
333	Engineered Affibodies in Translational Medicine. , 2014, , 317-342.		0
334	177Lu-Labeled RGD-BBN Peptide for Targeting Prostate Cancer. Methods in Pharmacology and Toxicology, 2015, , 93-98.	0.2	0
335	FRET Imaging of Enzymatic Activities Using Smart Probes. Methods in Molecular Biology, 2016, 1444, 37-43.	0.9	0
336	Imaging: Multifunctional Biomedical Imaging in Physiological and Pathological Conditions Using a NIRâ€II Probe (Adv. Funct. Mater. 23/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
337	Identification of a novel missense mutation c.29G>T in the <i>ABO*A1.02</i> allele from a Chinese individual with an A subtype. Transfusion, 2019, 59, 2162-2163.	1.6	0
338	Photoacoustic Imaging: An IR820 Dye–Protein Complex for Second Nearâ€Infrared Window and Photoacoustic Imaging (Advanced Optical Materials 4/2020). Advanced Optical Materials, 2020, 8, 2070017.	7.3	0
339	Near-Infrared II Optical Imaging. , 2021, , 397-420.		0
340	Amphiphilic Cyclopeptideâ€Dyes: Smart Selfâ€Assembly Amphiphilic Cyclopeptideâ€Dye for Nearâ€Infrared Windowâ€II Imaging (Adv. Mater. 16/2021). Advanced Materials, 2021, 33, 2170121.	21.0	0
341	Editorial: Advances in the Understanding of Tumor Microenvironment: Molecular and Theranostic Imaging. Frontiers in Bioengineering and Biotechnology, 2021, 9, 731119.	4.1	0