Reinhard Sterner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1522349/publications.pdf

Version: 2024-02-01

201674 168389 3,173 85 27 53 citations h-index g-index papers 167 167 167 2619 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural Evidence for Evolution of the beta /alpha Barrel Scaffold by Gene Duplication and Fusion. Science, 2000, 289, 1546-1550.	12.6	310
2	$2.0~{\rm \tilde{A}}{\rm Y}$ structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability. Structure, $1995, 3, 1295-1306$.	3.3	241
3	Catalytic Versatility, Stability, and Evolution of the $(\hat{l}^2\hat{l}_\pm)$ 8-Barrel Enzyme Fold. Chemical Reviews, 2005, 105, 4038-4055.	47.7	181
4	Dissection of a (betaalpha)8-barrel enzyme into two folded halves. Nature Structural Biology, 2001, 8, 32-36.	9.7	134
5	Ancestral protein reconstruction: techniques and applications. Biological Chemistry, 2016, 397, 1-21.	2.5	121
6	Structural Evidence for Ammonia Tunneling across the $(\hat{l}^2\hat{l}\pm)8$ Barrel of the Imidazole Glycerol Phosphate Synthase Bienzyme Complex. Structure, 2002, 10, 185-193.	3.3	109
7	Crystal Structure at 2.0 à Resolution of Phosphoribosyl Anthranilate Isomerase from the HyperthermophileThermotoga maritima: Possible Determinants of Protein Stabilityâ€,#. Biochemistry, 1997, 36, 6009-6016.	2.5	100
8	Mimicking enzyme evolution by generating new $(\hat{A}\hat{A})$ 8-barrels from $(\hat{A}\hat{A})$ 4-half-barrels. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16448-16453.	7.1	97
9	Structure and function of mutationally generated monomers of dimeric phosphoribosylanthranilate isomerase from Thermotoga maritima. Structure, 2000, 8, 265-276.	3.3	92
10	Imidazole Glycerol Phosphate Synthase fromThermotoga maritima. Journal of Biological Chemistry, 2001, 276, 20387-20396.	3.4	86
11	Stability, catalytic versatility and evolution of the $(\hat{l}^2\hat{l}_{\pm})$ 8-barrel fold. Current Opinion in Biotechnology, 2001, 12, 376-381.	6.6	83
12	Phosphoribosyl anthranilate isomerase from <i>Thermotoga maritima</i> is an extremely stable and active homodimer. Protein Science, 1996, 5, 2000-2008.	7.6	75
13	Two $(\hat{l}^2\hat{l}_{\pm})$ 8-Barrel Enzymes of Histidine and Tryptophan Biosynthesis Have Similar Reaction Mechanisms and Common Strategies for Protecting Their Labile Substrates,. Biochemistry, 2002, 41, 12032-12042.	2.5	68
14	A Robust Protein Host for Anchoring Chelating Ligands and Organocatalysts. ChemBioChem, 2008, 9, 552-564.	2.6	67
15	Establishing wild-type levels of catalytic activity on natural and artificial $(\hat{l}^2\hat{l}_\pm)$ ₈ -barrel protein scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3704-3709.	7.1	65
16	Exploiting Protein Symmetry To Design Lightâ€Controllable Enzyme Inhibitors. Angewandte Chemie - International Edition, 2014, 53, 595-598.	13.8	61
17	Computational and Experimental Evidence for the Evolution of a $(\hat{l}^2\hat{l}_\pm)$ 8-Barrel Protein from an Ancestral Quarter-Barrel Stabilised by Disulfide Bonds. Journal of Molecular Biology, 2010, 398, 763-773.	4.2	54
18	Molecular Engineering of Organophosphate Hydrolysis Activity from a Weak Promiscuous Lactonase Template. Journal of the American Chemical Society, 2013, 135, 11670-11677.	13.7	53

#	Article	IF	CITATIONS
19	Evidence for the Existence of Elaborate Enzyme Complexes in the Paleoarchean Era. Journal of the American Chemical Society, 2014, 136, 122-129.	13.7	51
20	Enhancing the Stability and Solubility of the Glucocorticoid Receptor Ligand-Binding Domain by High-Throughput Library Screening. Journal of Molecular Biology, 2010, 403, 562-577.	4.2	46
21	Stabilisation of a $(\hat{l}^2\hat{l}_\pm)$ 8-Barrel Protein Designed from Identical Half Barrels. Journal of Molecular Biology, 2007, 372, 114-129.	4.2	44
22	Interconverting the Catalytic Activities of $(\hat{l}^2\hat{l}\pm)$ 8-barrel Enzymes from Different Metabolic Pathways: Sequence Requirements and Molecular Analysis. Journal of Molecular Biology, 2004, 337, 871-879.	4.2	43
23	Rosetta:MSF: a modular framework for multi-state computational protein design. PLoS Computational Biology, 2017, 13, e1005600.	3.2	43
24	Catalysis Uncoupling in a Glutamine Amidotransferase Bienzyme by Unblocking the Glutaminase Active Site. Chemistry and Biology, 2012, 19, 1589-1599.	6.0	40
25	A common evolutionary origin of two elementary enzyme folds. FEBS Letters, 2002, 510, 133-135.	2.8	36
26	High-Resolution Crystal Structure of an Artificial $(\hat{l}^2\hat{l}_\pm)$ 8-Barrel Protein Designed from Identical Half-Barrels. Biochemistry, 2009, 48, 1145-1147.	2.5	36
27	Extreme thermostability of tarantula hemocyanin. FEBS Letters, 1995, 364, 9-12.	2.8	33
28	Ancestral Tryptophan Synthase Reveals Functional Sophistication of Primordial Enzyme Complexes. Cell Chemical Biology, 2016, 23, 709-715.	5.2	31
29	<i>In Silico</i> Identification and Experimental Validation of Distal Activity-Enhancing Mutations in Tryptophan Synthase. ACS Catalysis, 2021, 11, 13733-13743.	11.2	30
30	Photochromic coenzyme Q derivatives: switching redox potentials with light. Chemical Science, 2017, 8, 6474-6483.	7.4	27
31	Analysis of allosteric communication in a multienzyme complex by ancestral sequence reconstruction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 346-354.	7.1	26
32	Small-angle X-ray scattering reveals differences between the quaternary structures of oxygenated and deoxygenated tarantula hemocyanin. FEBS Letters, 1996, 393, 226-230.	2.8	25
33	Light Regulation of Enzyme Allostery through Photo-responsive Unnatural Amino Acids. Cell Chemical Biology, 2019, 26, 1501-1514.e9.	5.2	25
34	Computational Design of Enzymes. Chemistry and Biology, 2008, 15, 421-423.	6.0	24
35	Structural and Mutational Analysis of Substrate Complexation by Anthranilate Phosphoribosyltransferase from Sulfolobus solfataricus. Journal of Biological Chemistry, 2006, 281, 21410-21421.	3.4	23
36	A comprehensive analysis of the geranylgeranylglyceryl phosphate synthase enzyme family identifies novel members and reveals mechanisms of substrate specificity and quaternary structure organization. Molecular Microbiology, 2014, 92, 885-899.	2.5	23

#	Article	IF	CITATIONS
37	A Rationally Designed Monomeric Variant of Anthranilate Phosphoribosyltransferase from Sulfolobus solfataricus is as Active as the Dimeric Wild-type Enzyme but Less Thermostable. Journal of Molecular Biology, 2008, 376, 506-516.	4.2	22
38	Reconstruction of ancestral enzymes. Perspectives in Science, 2016, 9, 17-23.	0.6	22
39	Evolutionary diversification of protein–protein interactions by interface add-ons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8333-E8342.	7.1	22
40	Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex. Nature Communications, 2021, 12, 2748.	12.8	22
41	Role of the N-Terminal Extension of the (βα)8-Barrel Enzyme Indole-3-glycerol Phosphate Synthase for Its Fold, Stability, and Catalytic Activityâ€,‡. Biochemistry, 2005, 44, 16405-16412.	2.5	21
42	Conservation of the Folding Mechanism between Designed Primordial ($\hat{l}^2\hat{l}_\pm$) ₈ -Barrel Proteins and Their Modern Descendant. Journal of the American Chemical Society, 2012, 134, 12786-12791.	13.7	21
43	Related (βα) ₈ â€Barrel Proteins in Histidine and Tryptophan Biosynthesis: A Paradigm to Study Enzyme Evolution. ChemBioChem, 2011, 12, 1487-1494.	2.6	20
44	Artificial Light Regulation of an Allosteric Bienzyme Complex by a Photosensitive Ligand. ChemBioChem, 2018, 19, 1750-1757.	2.6	19
45	Prediction of quaternary structure by analysis of hot spot residues in proteinâ€protein interfaces: the case of anthranilate phosphoribosyltransferases. Proteins: Structure, Function and Bioinformatics, 2019, 87, 815-825.	2.6	18
46	Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation. PLoS Genetics, 2016, 12, e1005836.	3.5	18
47	Directed evolution of (ÂÂ)8-barrel enzymes: establishing phosphoribosylanthranilate isomerisation activity on the scaffold of the tryptophan synthase Â-subunit. Protein Engineering, Design and Selection, 2012, 25, 285-293.	2.1	17
48	Standardized cloning vectors for protein production and generation of large gene libraries in <i>Escherichia coli</i> . BioTechniques, 2018, 64, 24-26.	1.8	17
49	Functional characterisation of two î"12-desaturases demonstrates targeted production of linoleic acid as pheromone precursor in <i>Nasonia</i>). Journal of Experimental Biology, 2019, 222, .	1.7	16
50	Epimerisation of chiral hydroxylactones by short-chain dehydrogenases/reductases accounts for sex pheromone evolution in Nasonia. Scientific Reports, 2016, 6, 34697.	3.3	15
51	Significance of the Protein Interface Configuration for Allostery in Imidazole Glycerol Phosphate Synthase. Biochemistry, 2020, 59, 2729-2742.	2.5	15
52	BIOCHEMISTRY: De Novo Design of an Enzyme. Science, 2004, 304, 1916-1917.	12.6	14
53	Kinetic Mechanism of Indole-3-glycerol Phosphate Synthase. Biochemistry, 2013, 52, 132-142.	2.5	14
54	Conversion of Anthranilate Synthase into Isochorismate Synthase: Implications for the Evolution of Chorismateâ€Utilizing Enzymes. Angewandte Chemie - International Edition, 2015, 54, 11270-11274.	13.8	14

#	Article	IF	CITATIONS
55	Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design. Protein Engineering, Design and Selection, 2015, 28, 147-151.	2.1	14
56	Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex. Proteins: Structure, Function and Bioinformatics, 2017, 85, 312-321.	2.6	14
57	Experimental Assessment of the Importance of Amino Acid Positions Identified by an Entropy-Based Correlation Analysis of Multiple-Sequence Alignments. Biochemistry, 2012, 51, 5633-5641.	2.5	12
58	Relationship of Catalysis and Active Site Loop Dynamics in the $(\hat{l}^2\hat{l}_\pm)$ ₈ -Barrel Enzyme Indole-3-glycerol Phosphate Synthase. Biochemistry, 2018, 57, 3265-3277.	2.5	12
59	Activation of Anthranilate Phosphoribosyltransferase from Sulfolobus solfataricus by Removal of Magnesium Inhibition and Acceleration of Product Release,. Biochemistry, 2009, 48, 5199-5209.	2.5	11
60	Mapping the Allosteric Communication Network of Aminodeoxychorismate Synthase. Journal of Molecular Biology, 2019, 431, 2718-2728.	4.2	11
61	Towards Photochromic Azobenzeneâ€Based Inhibitors for Tryptophan Synthase. Chemistry - A European Journal, 2021, 27, 2439-2451.	3.3	11
62	Stabilization of a Metabolic Enzyme by Library Selection in <i>Thermus thermophilus</i> ChemBioChem, 2011, 12, 1581-1588.	2.6	10
63	A Fast and Precise Approach for Computational Saturation Mutagenesis and its Experimental Validation by Using an Artificial (βα) < sub > 8 < /sub > ⠀ Barrel Protein. ChemBioChem, 2011, 12, 1544-1550.	2.6	10
64	Folding Mechanism of an Extremely Thermostable $(\hat{l}^2\hat{l}_\pm)$ (sub>8-Barrel Enzyme: A High Kinetic Barrier Protects the Protein from Denaturation. Biochemistry, 2012, 51, 3420-3432.	2.5	10
65	Hexamerization of Geranylgeranylglyceryl Phosphate Synthase Ensures Structural Integrity and Catalytic Activity at High Temperatures. Biochemistry, 2018, 57, 2335-2348.	2.5	10
66	A Fold-Independent Interface Residue Is Crucial for Complex Formation and Allosteric Signaling in Class I Glutamine Amidotransferases. Biochemistry, 2019, 58, 2584-2588.	2.5	10
67	Establishing catalytic activity on an artificial (βα) ₈ â€barrel protein designed from identical halfâ€barrels. FEBS Letters, 2013, 587, 2798-2805.	2.8	9
68	Protein Design at the Crossroads of Biotechnology, Chemistry, Theory, and Evolution. Angewandte Chemie - International Edition, 2003, 42, 140-142.	13.8	8
69	TransCent: Computational enzyme design by transferring active sites and considering constraints relevant for catalysis. BMC Bioinformatics, 2009, 10, 54.	2.6	8
70	Light-Regulation of Tryptophan Synthase by Combining Protein Design and Enzymology. International Journal of Molecular Sciences, 2019, 20, 5106.	4.1	8
71	A sugar isomerization reaction established on various (ÂÂ)8-barrel scaffolds is based on substrate-assisted catalysis. Protein Engineering, Design and Selection, 2012, 25, 751-760.	2.1	7
72	Dimerization Determines Substrate Specificity of a Bacterial Prenyltransferase. ChemBioChem, 2012, 13, 1297-1303.	2.6	6

#	Article	IF	CITATIONS
73	Identification and Characterization of Heptaprenylglyceryl Phosphate Processing Enzymes in Bacillus subtilis. Journal of Biological Chemistry, 2016, 291, 14861-14870.	3.4	6
74	Evolutionary Morphing of Tryptophan Synthase: Functional Mechanisms for the Enzymatic Channeling of Indole. Journal of Molecular Biology, 2018, 430, 5066-5079.	4.2	6
75	Activation of a Chimeric Rpb5/RpoH Subunit Using Library Selection. PLoS ONE, 2014, 9, e87485.	2.5	6
76	Generation of a Standâ€Alone Tryptophan Synthase αâ€Subunit by Mimicking an Evolutionary Blueprint. ChemBioChem, 2019, 20, 2747-2751.	2.6	4
77	Quaternary Structure of the Tryptophan Synthase α-Subunit Homolog BX1 from <i>Zea mays</i> Journal of the American Society for Mass Spectrometry, 2020, 31, 227-233.	2.8	4
78	Editorial: Directed Evolution: A Powerful Approach to Optimising and Understanding Enzymes. ChemBioChem, 2011, 12, 1439-1440.	2.6	3
79	Mapping key amino acid residues for the epimerase efficiency and stereospecificity of the sex pheromone biosynthetic short-chain dehydrogenases/reductases of Nasonia. Scientific Reports, 2019, 9, 330.	3.3	3
80	Reprogramming the Specificity of a Protein Interface by Computational and Data-Driven Design. Structure, 2021, 29, 292-304.e3.	3.3	2
81	Photoswitching of Feedback Inhibition by Tryptophan in Anthranilate Synthase. ACS Synthetic Biology, 2022, 11, 2846-2856.	3.8	2
82	The Structure of Carbamoylphosphate Synthetase Unravels Central Functional Features of a Key Metabolic Multienzyme Complex. Biochemistry, 2021, 60, 3422-3423.	2.5	1
83	Library Selection with a Randomized Repertoire of $(\hat{l}^2\hat{l}_\pm)$ < sub>8-Barrel Enzymes Results in Unexpected Induction of Gene Expression. Biochemistry, 2019, 58, 4207-4217.	2.5	0
84	Substrate Specifity and Quaternary Structure of a Novel Class of Tryptophan Synthases. FASEB Journal, 2015, 29, 573.5.	0.5	0
85	Library Generation and Auxotrophic Selection Assays in Escherichia coli and Thermus thermophilus. Methods in Molecular Biology, 2018, 1685, 333-345.	0.9	O