
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/152220/publications.pdf Version: 2024-02-01

RDII CORMAND

#	Article	IF	CITATIONS
1	Polygenic association between attention-deficit/hyperactivity disorder liability and cognitive impairments. Psychological Medicine, 2022, 52, 3150-3158.	2.7	9
2	Molecular genetics of cocaine use disorders in humans. Molecular Psychiatry, 2022, 27, 624-639.	4.1	32
3	Non-mental diseases associated with ADHD across the lifespan: Fidgety Philipp and Pippi Longstocking at risk of multimorbidity?. Neuroscience and Biobehavioral Reviews, 2022, 132, 1157-1180.	2.9	22
4	Identification of genetic variants influencing methylation in brain with pleiotropic effects on psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 113, 110454.	2.5	8
5	Comprehensive exploration of the genetic contribution of the dopaminergic and serotonergic pathways to psychiatric disorders. Translational Psychiatry, 2022, 12, 11.	2.4	17
6	Elucidating the relationship between migraine risk and brain structure using genetic data. Brain, 2022, 145, 3214-3224.	3.7	7
7	miRNA signatures associated with vulnerability to food addiction in mice and humans. Journal of Clinical Investigation, 2022, 132, .	3.9	10
8	Exploring the Contribution to ADHD of Genes Involved in Mendelian Disorders Presenting with Hyperactivity and/or Inattention. Genes, 2022, 13, 93.	1.0	4
9	Deficiency of the ywhaz gene, involved in neurodevelopmental disorders, alters brain activity and behaviour in zebrafish. Molecular Psychiatry, 2022, 27, 3739-3748.	4.1	8
10	Differential expression of miRâ€1249â€3p and miRâ€34bâ€5p between vulnerable and resilient phenotypes of cocaine addiction. Addiction Biology, 2022, 27, .	1.4	7
11	Exploring allele specific methylation in drug dependence susceptibility. Journal of Psychiatric Research, 2021, 136, 474-482.	1.5	1
12	Risk variants and polygenic architecture of disruptive behavior disorders in the context of attention-deficit/hyperactivity disorder. Nature Communications, 2021, 12, 576.	5.8	28
13	Genomics and epigenomics of substance use disorders: An introduction. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 125-127.	1.1	0
14	Reduced cue-induced reinstatement of cocaine-seeking behavior in Plcb1 +/â^ mice. Translational Psychiatry, 2021, 11, 521.	2.4	4
15	RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior. European Neuropsychopharmacology, 2020, 30, 44-55.	0.3	38
16	Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing. Molecular Psychiatry, 2020, 25, 2047-2057.	4.1	17
17	Cross-disorder genetic analyses implicate dopaminergic signaling as a biological link between Attention-Deficit/Hyperactivity Disorder and obesity measures. Neuropsychopharmacology, 2020, 45, 1188-1195.	2.8	23
18	Characterization of an eutherian gene cluster generated after transposon domestication identifies Bex3 as relevant for advanced neurological functions. Genome Biology, 2020, 21, 267.	3.8	10

#	Article	IF	CITATIONS
19	Variants of the Aggression-Related RBFOX1 Gene in a Population Representative Birth Cohort Study: Aggressiveness, Personality, and Alcohol Use Disorder. Frontiers in Psychiatry, 2020, 11, 501847.	1.3	4
20	Involvement of the 14-3-3 Gene Family in Autism Spectrum Disorder and Schizophrenia: Genetics, Transcriptomics and Functional Analyses. Journal of Clinical Medicine, 2020, 9, 1851.	1.0	14
21	DDC expression is not regulated by NFAT5 (TonEBP) in dopaminergic neural cell lines. Gene, 2020, 742, 144569.	1.0	1
22	Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology, 2020, 45, 1617-1626.	2.8	72
23	Cross-trait analyses with migraine reveal widespread pleiotropy and suggest a vascular component to migraine headache. International Journal of Epidemiology, 2020, 49, 1022-1031.	0.9	34
24	Genomic analysis of the natural history of attention-deficit/hyperactivity disorder using Neanderthal and ancient Homo sapiens samples. Scientific Reports, 2020, 10, 8622.	1.6	18
25	An integrated analysis of genes and functional pathways for aggression in human and rodent models. Molecular Psychiatry, 2019, 24, 1655-1667.	4.1	61
26	Attention Deficit Hyperactivity Disorder and Obesity: The Weight of Shared Genetic Risk Factors. European Neuropsychopharmacology, 2019, 29, S759.	0.3	0
27	S68EXPLORING DOPAMINERGIC AND SEROTONERGIC PATHWAYS IN PSYCHIATRIC DISORDERS. European Neuropsychopharmacology, 2019, 29, S148-S149.	0.3	0
28	SU48MIRNA PROFILING IN A MOUSE MODEL OF EATING ADDICTION. European Neuropsychopharmacology, 2019, 29, S1293.	0.3	0
29	F21WHOLE EXOME SEQUENCING IDENTIFIES LRP1 AS NOVEL CANDIDATE GENE ACROSS PSYCHIATRIC DISORDERS. European Neuropsychopharmacology, 2019, 29, S1120-S1121.	0.3	0
30	Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder. Translational Psychiatry, 2019, 9, 242.	2.4	21
31	ADGRL3 (LPHN3) variants predict substance use disorder. Translational Psychiatry, 2019, 9, 42.	2.4	29
32	Genome-wide association meta-analysis of cocaine dependence: Shared genetics with comorbid conditions. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 94, 109667.	2.5	48
33	ASSOCIATION OF THE PLCB1 GENE WITH DRUG DEPENDENCE. European Neuropsychopharmacology, 2019, 29, S1018.	0.3	0
34	An Integrated and Network-Based Analysis of Genes For Aggression in Human and Rodent Models. European Neuropsychopharmacology, 2019, 29, S735.	0.3	0
35	14. Conditional Knockout of Rbfox1, a Cross-Disorder Psychiatric Risk Gene, Causes an Autism-Like Phenotype in Mice. Biological Psychiatry, 2019, 85, S6.	0.7	0
36	INTEGRATIVE GENOMIC ANALYSIS OF METHYLPHENIDATE RESPONSE IN ATTENTION-DEFICIT/HYPERACTIVITY DISORDER. European Neuropsychopharmacology, 2019, 29, S1002.	0.3	0

#	Article	IF	CITATIONS
37	F2ELUCIDATING THE GENETIC AND BIOLOGICAL FACTORS UNDERLYING THE RELATIONSHIP BETWEEN ADHD AND BMI VARIATION. European Neuropsychopharmacology, 2019, 29, S1110-S1111.	0.3	0
38	CONVERGENT FUNCTIONAL GENOMICS APPROACH TO IDENTIFY GENES INVOLVED IN ATTENTION DEFICIT/HYPERACTIVITY DISORDER. European Neuropsychopharmacology, 2019, 29, S824-S825.	0.3	0
39	EXPLORING THE CONTRIBUTION TO ADHD OF GENES INVOLVED IN MENDELIAN DISORDERS (OMIM) PRESENTING WITH HYPERACTIVITY AND/OR INATTENTION. European Neuropsychopharmacology, 2019, 29, S52.	0.3	0
40	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	13.5	935
41	Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 2019, 51, 63-75.	9.4	1,594
42	Truncating variant burden in high-functioning autism and pleiotropic effects of <i>LRP1</i> across psychiatric phenotypes. Journal of Psychiatry and Neuroscience, 2019, 44, 350-359.	1.4	24
43	Paternally inherited cis-regulatory structural variants are associated with autism. Science, 2018, 360, 327-331.	6.0	174
44	Evaluation of previous substance dependence genome-wide significant findings in a Spanish sample. Drug and Alcohol Dependence, 2018, 187, 358-362.	1.6	4
45	A De Novo FOXP1 Truncating Mutation in a Patient Originally Diagnosed as C Syndrome. Scientific Reports, 2018, 8, 694.	1.6	11
46	Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder. Scientific Reports, 2018, 8, 1881.	1.6	14
47	Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families. Neuron, 2018, 98, 743-753.e4.	3.8	63
48	A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2018, 83, 1044-1053.	0.7	146
49	Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. European Neuropsychopharmacology, 2018, 28, 1059-1088.	0.3	398
50	MiR-9, miR-153 and miR-124 are down-regulated by acute exposure to cocaine in a dopaminergic cell model and may contribute to cocaine dependence. Translational Psychiatry, 2018, 8, 173.	2.4	21
51	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
52	Pharmacogenetics of methylphenidate response and tolerability in attention-deficit/hyperactivity disorder. Pharmacogenomics Journal, 2017, 17, 98-104.	0.9	23
53	A De Novo Nonsense Mutation in MAGEL2 in a Patient Initially Diagnosed as Opitz-C: Similarities Between Schaaf-Yang and Opitz-C Syndromes. Scientific Reports, 2017, 7, 44138.	1.6	29
54	Mutation Spectrum in the CACNA1A Gene in 49 Patients with Episodic Ataxia. Scientific Reports, 2017, 7, 2514.	1.6	36

#	Article	IF	CITATIONS
55	Transcriptomic Changes in Rat Cortex and Brainstem After Cortical Spreading Depression With or Without Pretreatment With Migraine Prophylactic Drugs. Journal of Pain, 2017, 18, 366-375.	0.7	5
56	Evidence For Association Of Genetic Variants In Pri-Mir-34B/C And Abnormal MIR-34C Expression With Attention-Deficit And Hyperactivity Disorder. European Neuropsychopharmacology, 2017, 27, S433-S434.	0.3	0
57	Association of the PLCB1 gene with drug dependence. Scientific Reports, 2017, 7, 10110.	1.6	12
58	Gene-wide Association Study Reveals RNF122 Ubiquitin Ligase as a Novel Susceptibility Gene for Attention Deficit Hyperactivity Disorder. Scientific Reports, 2017, 7, 5407.	1.6	11
59	Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis. Biological Psychiatry, 2017, 82, 634-641.	0.7	99
60	Lack of replication of previous autism spectrum disorder GWAS hits in European populations. Autism Research, 2017, 10, 202-211.	2.1	34
61	Identifying Extreme Observations, Outliers and Noise in Clinical and Genetic Data. Current Bioinformatics, 2017, 12, 101-117.	0.7	5
62	Extreme Observations in Biomedical Data. Trends in Mathematics, 2017, , 3-8.	0.1	0
63	MDMA (Ecstasy) and Gene Expression in the Brain. , 2016, , 415-430.		1
64	Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder. Translational Psychiatry, 2016, 6, e879-e879.	2.4	31
65	Meta-analysis of the DRD5 VNTR in persistent ADHD. European Neuropsychopharmacology, 2016, 26, 1527-1532.	0.3	4
66	Screening of CD96 and ASXL1 in 11 patients with Opitz C or Bohring–Opitz syndromes. American Journal of Medical Genetics, Part A, 2016, 170, 24-31.	0.7	13
67	Genomeâ€wide analyses of aggressiveness in attentionâ€deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 733-747.	1.1	40
68	The genetics of aggression: Where are we now?. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 559-561.	1.1	12
69	Aggressive behavior in humans: Genes and pathways identified through association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 676-696.	1.1	64
70	Exome chip analyses in adult attention deficit hyperactivity disorder. Translational Psychiatry, 2016, 6, e923-e923.	2.4	27
71	A Highly Polymorphic Copy Number Variant in the NSF Gene is Associated with Cocaine Dependence. Scientific Reports, 2016, 6, 31033.	1.6	8

#	Article	IF	CITATIONS
73	Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nature Genetics, 2016, 48, 856-866.	9.4	520
74	Genetics of aggressive behavior: An overview. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 3-43.	1.1	109
75	Novel Candidate Genes and a Wide Spectrum of Structural and Point Mutations Responsible for Inherited Retinal Dystrophies Revealed by Exome Sequencing. PLoS ONE, 2016, 11, e0168966.	1.1	40
76	On the role of <i>NOS1</i> ex1fâ€VNTR in ADHD—allelic, subgroup, and metaâ€analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 445-458.	1.1	20
77	Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 480-491.	1.1	18
78	New suggestive genetic loci and biological pathways for attention function in adult attentionâ€deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 459-470.	1.1	78
79	Frustrated expected reward induces differential transcriptional changes in the mouse brain. Addiction Biology, 2015, 20, 22-37.	1.4	12
80	Evaluation of Aminoglycoside and Non-Aminoglycoside Compounds for Stop-Codon Readthrough Therapy in Four Lysosomal Storage Diseases. PLoS ONE, 2015, 10, e0135873.	1.1	33
81	Contribution of common and rare variants of the PTCHD1 gene to autism spectrum disorders and intellectual disability. European Journal of Human Genetics, 2015, 23, 1694-1701.	1.4	31
82	Candidate-gene association study searching for genetic factors involved in migraine chronification. Cephalalgia, 2015, 35, 500-507.	1.8	20
83	Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. American Journal of Human Genetics, 2015, 96, 283-294.	2.6	225
84	Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nature Neuroscience, 2015, 18, 199-209.	7.1	701
85	Replication study of previous migraine genome-wide association study findings in a Spanish sample of migraine with aura. Cephalalgia, 2015, 35, 776-782.	1.8	30
86	Common and rare variants of microRNA genes in autism spectrum disorders. World Journal of Biological Psychiatry, 2015, 16, 376-386.	1.3	27
87	Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence. Translational Psychiatry, 2015, 5, e667-e667.	2.4	17
88	Converging evidence does not support <i>GIT1</i> as an ADHD risk gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 492-507.	1.1	18
89	Case–Control Genome-Wide Association Study of Persistent Attention-Deficit Hyperactivity Disorder Identifies FBXO33 as a Novel Susceptibility Gene for the Disorder. Neuropsychopharmacology, 2015, 40, 915-926.	2.8	59
90	The involvement of serotonin polymorphisms in autistic spectrum symptomatology. Psychiatric Genetics, 2014, 24, 158-163.	0.6	8

#	Article	IF	CITATIONS
91	Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations. Molecular Psychiatry, 2014, 19, 784-790.	4.1	110
92	Clinical and genetic analysis in alternating hemiplegia of childhood: Ten new patients from Southern Europe. Journal of the Neurological Sciences, 2014, 344, 37-42.	0.3	19
93	A loss-of-function CACNA1A mutation causing benign paroxysmal torticollis of infancy. European Journal of Paediatric Neurology, 2014, 18, 430-433.	0.7	36
94	Genome-wide copy number variation analysis in adult attention-deficit and hyperactivity disorder. Journal of Psychiatric Research, 2014, 49, 60-67.	1.5	50
95	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	9.4	2,067
96	Migraine without aura: genome-wide association analysis identifies several novel susceptibility. Journal of Headache and Pain, 2013, 14, .	2.5	0
97	Evaluation of single nucleotide polymorphisms in the miR-183–96–182 cluster in adulthood attention-deficit and hyperactivity disorder (ADHD) and substance use disorders (SUDs). European Neuropsychopharmacology, 2013, 23, 1463-1473.	0.3	38
98	Evaluation of common variants in 16 genes involved in the regulation of neurotransmitter release in ADHD. European Neuropsychopharmacology, 2013, 23, 426-435.	0.3	28
99	Lack of association between the LPR and VNTR polymorphisms of the serotonin transporter gene and cocaine dependence in a Spanish sample. Psychiatry Research, 2013, 210, 1287-1289.	1.7	6
100	Association study of 37 genes related to serotonin and dopamine neurotransmission and neurotrophic factors in cocaine dependence. Genes, Brain and Behavior, 2013, 12, 39-46.	1.1	27
101	Impact of genetic factors on dyslipidemia in HIV-infected patients starting antiretroviral therapy. Aids, 2013, 27, 529-538.	1.0	30
102	Analysis of two language-related genes in autism. Psychiatric Genetics, 2013, 23, 82-85.	0.6	78
103	Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC. World Journal of Biological Psychiatry, 2013, 14, 516-527.	1.3	36
104	Rare variants analysis of neurexin-11² in autism reveals a novel start codon mutation affecting protein levels at synapses. Psychiatric Genetics, 2013, 23, 262-266.	0.6	11
105	<i>DISC1</i> in adult ADHD patients: An association study in two European samples. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 227-234.	1.1	16
106	Screening of <scp><i>CACNA1A</i></scp> and <scp><i>ATP1A2</i></scp> genes in hemiplegic migraine: clinical, genetic, and functional studies. Molecular Genetics & Genomic Medicine, 2013, 1, 206-222.	0.6	35
107	Levodopaâ€induced dyskinesias in tyrosine hydroxylase deficiency. Movement Disorders, 2013, 28, 1058-1063.	2.2	65
108	Chiari Malformation Type I: A Case-Control Association Study of 58 Developmental Genes. PLoS ONE, 2013, 8, e57241.	1.1	61

#	Article	IF	CITATIONS
109	A replication study of a GWAS finding in migraine does not identify association in a Spanish case-control sample. Cephalalgia, 2012, 32, 1076-1080.	1.8	11
110	The genetics of attention deficit/hyperactivity disorder in adults, a review. Molecular Psychiatry, 2012, 17, 960-987.	4.1	317
111	Candidate pathway association study in cocaine dependence: The control of neurotransmitter release. World Journal of Biological Psychiatry, 2012, 13, 126-134.	1.3	15
112	An association study of sequence variants in the forkhead box P2 (FOXP2) gene and adulthood attention-deficit/hyperactivity disorder in two European samples. Psychiatric Genetics, 2012, 22, 155-160.	0.6	14
113	Characterisation of two deletions involving NPC1 and flanking genes in Niemann–Pick Type C disease patients. Molecular Genetics and Metabolism, 2012, 107, 716-720.	0.5	18
114	Candidate system analysis in ADHD: Evaluation of nine genes involved in dopaminergic neurotransmission identifies association with <i>DRD1</i> . World Journal of Biological Psychiatry, 2012, 13, 281-292.	1.3	28
115	Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nature Genetics, 2012, 44, 777-782.	9.4	294
116	Active and passive MDMA (†̃ecstasy') intake induces differential transcriptional changes in the mouse brain. Genes, Brain and Behavior, 2012, 11, 38-51.	1.1	20
117	SNP variants within the vanilloid <i>TRPV1</i> and <i>TRPV3</i> receptor genes are associated with migraine in the Spanish population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 94-103.	1.1	71
118	Acute Striatal Necrosis in Hemiplegic Migraine With de Novo CACNA1A Mutation. Headache, 2011, 51, 1542-1546.	1.8	15
119	Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. Genes, Brain and Behavior, 2011, 10, 149-157.	1.1	103
120	Association study of six candidate genes asymmetrically expressed in the two cerebral hemispheres suggests the involvement of BAIAP2 in autism. Journal of Psychiatric Research, 2011, 45, 280-282.	1.5	40
121	Deletion in the tyrosine hydroxylase gene in a patient with a mild phenotype. Movement Disorders, 2011, 26, 1558-1560.	2.2	12
122	Exploring <i>DRD4</i> and its interaction with <i>SLC6A3</i> as possible risk factors for adult ADHD: A metaâ€analysis in four European populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 600-612.	1.1	22
123	Cerebral Folate Deficiency Syndromes in Childhood. Archives of Neurology, 2011, 68, 615-21.	4.9	52
124	DIRAS2 is Associated with Adult ADHD, Related Traits, and Co-Morbid Disorders. Neuropsychopharmacology, 2011, 36, 2318-2327.	2.8	49
125	Association study of the serotoninergic system in migraine in the spanish population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 177-184.	1.1	24
126	Association study between the DAT1, DBH and DRD2 genes and cocaine dependence in a Spanish sample. Psychiatric Genetics, 2010, 20, 317-320.	0.6	37

#	Article	IF	CITATIONS
127	Progressive ataxia and myoclonic epilepsy in a patient with a homozygous mutation in the <i>FOLR1</i> gene. Journal of Inherited Metabolic Disease, 2010, 33, 795-802.	1.7	43
128	Cerebrospinal fluid alterations of the serotonin product, 5â€hydroxyindolacetic acid, in neurological disorders. Journal of Inherited Metabolic Disease, 2010, 33, 803-809.	1.7	34
129	Metaâ€analysis of brainâ€derived neurotrophic factor p.Val66Met in adult ADHD in four European populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 512-523.	1.1	55
130	Common variants in the TPH1 and TPH2 regions are not associated with persistent ADHD in a combined sample of 1,636 adult cases and 1,923 controls from four European populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1008-1015.	1.1	18
131	Tyrosine hydroxylase deficiency in three Greek patients with a common ancestral mutation. Movement Disorders, 2010, 25, 1086-1090.	2.2	22
132	An international multicenter association study of the serotonin transporter gene in persistent ADHD. Genes, Brain and Behavior, 2010, 9, 449-458.	1.1	55
133	A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Molecular Psychiatry, 2010, 15, 1053-1066.	4.1	245
134	A mutation in the first intracellular loop of CACNA1A prevents P/Q channel modulation by SNARE proteins and lowers exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1672-1677.	3.3	23
135	Multicenter Analysis of the SLC6A3/DAT1 VNTR Haplotype in Persistent ADHD Suggests Differential Involvement of the Gene in Childhood and Persistent ADHD. Neuropsychopharmacology, 2010, 35, 656-664.	2.8	180
136	Absence of cytogenetic effects in children and adults with attention-deficit/hyperactivity disorder treated with methylphenidate. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 666, 44-49.	0.4	18
137	The hemiplegic migraine-associated Y1245C mutation in CACNA1A results in a gain of channel function due to its effect on the voltage sensor and G-protein-mediated inhibition. Pflugers Archiv European Journal of Physiology, 2009, 458, 489-502.	1.3	36
138	Familial hemiplegic migraine: linkage to chromosome 14q32 in a Spanish kindred. Neurogenetics, 2009, 10, 191-198.	0.7	14
139	Two-stage case-control association study of dopamine-related genes and migraine. BMC Medical Genetics, 2009, 10, 95.	2.1	28
140	Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB. Molecular Psychiatry, 2009, 14, 71-85.	4.1	141
141	Lack of association of hormone receptor polymorphisms with migraine. European Journal of Neurology, 2009, 16, 413-415.	1.7	24
142	Contribution of syntaxin 1A to the genetic susceptibility to migraine: A case–control association study in the Spanish population. Neuroscience Letters, 2009, 455, 105-109.	1.0	11
143	Case-Control Study of Six Genes Asymmetrically Expressed in the Two Cerebral Hemispheres: Association of BAIAP2 with Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2009, 66, 926-934.	0.7	59
144	Late-onset episodic ataxia type 2 associated with a novel loss-of-function mutation in the CACNA1A gene. Journal of the Neurological Sciences, 2009, 280, 10-14.	0.3	36

#	Article	IF	CITATIONS
145	Genetic Analysis of 27 Spanish Patients with Hemiplegic Migraine, Basilar-Type Migraine and Childhood Periodic Syndromes. Cephalalgia, 2008, 28, 1039-1047.	1.8	57
146	Association Study of 10 Genes Encoding Neurotrophic Factors and Their Receptors in Adult and Child Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2008, 63, 935-945.	0.7	93
147	Maroteaux–Lamy syndrome: Functional characterization of pathogenic mutations and polymorphisms in the arylsulfatase B gene. Molecular Genetics and Metabolism, 2008, 94, 305-312.	0.5	31
148	Identification of the molecular defects in Spanish and Argentinian mucopolysaccharidosis VI (Maroteaux–Lamy syndrome) patients, including 9 novel mutations. Molecular Genetics and Metabolism, 2007, 92, 122-130.	0.5	30
149	A homozygous tyrosine hydroxylase gene promoter mutation in a patient with dopa-responsive encephalopathy: Clinical, biochemical and genetic analysis. Molecular Genetics and Metabolism, 2007, 92, 274-277.	0.5	31
150	Implication of Chromosome 18 in Hypertension by Sibling Pair and Association Analyses. Hypertension, 2006, 48, 883-891.	1.3	24
151	A mutation within the saposin D domain in a Gaucher disease patient with normal glucocerebrosidase activity. Human Genetics, 2005, 117, 275-277.	1.8	41
152	Molybdenum Cofactor Deficiency Presenting as Neonatal Hyperekplexia: A Clinical, Biochemical and Genetic Study. Neuropediatrics, 2005, 36, 389-394.	0.3	30
153	POMGnT1 mutation and phenotypic spectrum in muscle-eye-brain disease. Journal of Medical Genetics, 2004, 41, e115-e115.	1.5	62
154	Association of TGF-beta1 polymorphisms with chronic renal disease. Journal of Nephrology, 2004, 17, 794-9.	0.9	17
155	Gene rearrangements in the glucocerebrosidase-metaxin region giving rise to disease-causing mutations and polymorphisms. Analysis of 25 RecNcil alleles in Gaucher disease patients. Human Genetics, 2003, 112, 426-429.	1.8	3
156	Unsuccessful chimeraplast strategy for the correction of a mutation causing Gaucher disease. Blood Cells, Molecules, and Diseases, 2003, 31, 183-186.	0.6	13
157	Genetic evidence of heterogeneity in intrahepatic cholestasis of pregnancy. Gut, 2003, 52, 1025-1029.	6.1	111
158	A homozygous nonsense mutation in the Fukutin gene causes a Walker-Warburg syndrome phenotype. Journal of Medical Genetics, 2003, 40, 845-848.	1.5	141
159	Paroxysmal Kinesigenic Dyskinesia and Generalized Seizures: Clinical and Genetic Analysis in a Spanish Pedigree. Neuropediatrics, 2002, 33, 288-293.	0.3	27
160	Mutations in the O-Mannosyltransferase Gene POMT1 Give Rise to the Severe Neuronal Migration Disorder Walker-Warburg Syndrome. American Journal of Human Genetics, 2002, 71, 1033-1043.	2.6	636
161	Splicing mutations, mainly IVS6-1(G>T), account for 70% of fumarylacetoacetate hydrolase (FAH) gene alterations, including 7 novel mutations, in a survey of 29 tyrosinemia type I patients. Human Mutation, 2002, 20, 180-188.	1.1	41
162	Adult-onset autosomal recessive ataxia with thalamic lesions in a Finnish family. Neurology, 2001, 57, 1043-1049.	1.5	37

#	Article	IF	CITATIONS
163	Clinical and genetic distinction between Walker–Warburg syndrome and muscle–eye–brain disease. Neurology, 2001, 56, 1059-1069.	1.5	169
164	A CRX mutation in a Finnish family with dominant cone-rod retinal dystrophy. Human Mutation, 2000, 16, 94-94.	1.1	19
165	Fusion of the Human Gene for the Polyubiquitination Coeffector UEV1 with Kua, a Newly Identified Gene. Genome Research, 2000, 10, 1743-1756.	2.4	91
166	A New Gene–Pseudogene Fusion Allele Due to a Recombination in Intron 2 of the Glucocerebrosidase Gene Causes Gaucher Disease. Blood Cells, Molecules, and Diseases, 2000, 26, 409-416.	0.6	20
167	On the Age of the Most Prevalent Gaucher Disease–Causing Mutation, N370S. American Journal of Human Genetics, 2000, 66, 2014-2015.	2.6	4
168	Merosin-deficient congenital muscular dystrophy with mental retardation and cerebellar cysts unlinked to the LAMA2, FCMD and MEB loci. Neuromuscular Disorders, 2000, 10, 548-552.	0.3	22
169	Assignment of the Muscle-Eye-Brain Disease Gene to 1p32-p34 by Linkage Analysis and Homozygosity Mapping. American Journal of Human Genetics, 1999, 64, 126-135.	2.6	128
170	Gaucher Disease: The N370S Mutation in Ashkenazi Jewish and Spanish Patients has a Common Origin and Arose Several Thousand Years Ago. American Journal of Human Genetics, 1999, 64, 1233-1238.	2.6	21
171	Reliable co-segregation analysis for prenatal diagnosis and heterozygote detection in Gaucher disease. , 1998, 18, 207-212.		1
172	Mutation analysis of Gaucher disease patients from Argentina: High prevalence of the RecNcil mutation. , 1998, 80, 343-351.		30
173	Molecular analysis and clinical findings in the Spanish Gaucher disease population: Putative haplotype of the N370S ancestral chromosome. , 1998, 11, 295-305.		52
174	Molecular analysis and clinical findings in the Spanish Gaucher disease population: Putative haplotype of the N370S ancestral chromosome. Human Mutation, 1998, 11, 295-305.	1.1	3
175	Genetic fine localization of the \hat{l}^2 -glucocerebrosidase (GBA) and prosaposin (PSAP) genes: implications for Gaucher disease. Human Genetics, 1997, 100, 75-79.	1.8	37
176	Two new mild homozygous mutations in Gaucher disease patients: Clinical signs and biochemical analyses. , 1997, 70, 437-443.		26
177	Two novel (1098insA and Y313H) and one rare (R359Q) mutations detected in exon 8 of the ?-glucocerebrosidase gene in Gaucher's disease patients. , 1996, 7, 272-274.		12
178	Gaucher disease in Spanish patients: Analysis of eight mutations. Human Mutation, 1995, 5, 303-309.	1.1	46