
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1522103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted siRNA nanocarrier: a platform technology for cancer treatment. Oncogene, 2022, 41, 2210-2224.	5.9	16
2	RNA Thermometer-coordinated Assembly of the Yersinia Injectisome. Journal of Molecular Biology, 2022, 434, 167667.	4.2	7
3	Virulence Factor Cargo and Host Cell Interactions of Shiga Toxin-Producing Escherichia coli Outer Membrane Vesicles. Methods in Molecular Biology, 2021, 2291, 177-205.	0.9	5
4	The Superior Adherence Phenotype of E. coli O104:H4 is Directly Mediated by the Aggregative Adherence Fimbriae Type I. Virulence, 2021, 12, 346-359.	4.4	9
5	Crystal structure of bacterial cytotoxic necrotizing factor CNF _Y reveals molecular building blocks for intoxication. EMBO Journal, 2021, 40, e105202.	7.8	14
6	Grad-seq identifies KhpB as a global RNA-binding protein in <i>Clostridioides difficile</i> that regulates toxin production. MicroLife, 2021, 2, .	2.1	25
7	The Small Protein YmoA Controls the Csr System and Adjusts Expression of Virulence-Relevant Traits of Yersinia pseudotuberculosis. Frontiers in Microbiology, 2021, 12, 706934.	3.5	7
8	Identification of Translocation Inhibitors Targeting the Type III Secretion System of Enteropathogenic Escherichia coli. Antimicrobial Agents and Chemotherapy, 2021, 65, e0095821.	3.2	6
9	Tumor ell‧pecific Targeting of Ibrutinib: Introducing Electrostatic Antibodyâ€Inhibitor Conjugates (AiCs). Angewandte Chemie - International Edition, 2021, , .	13.8	4
10	The gatekeeper of Yersinia type III secretion is under RNA thermometer control. PLoS Pathogens, 2021, 17, e1009650.	4.7	8
11	The Cytotoxic Necrotizing Factors (CNFs)—A Family of Rho GTPase-Activating Bacterial Exotoxins. Toxins, 2021, 13, 901.	3.4	3
12	RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression. PLoS Pathogens, 2020, 16, e1008552.	4.7	6
13	Identification of Antibiotics That Diminish Disease in a Murine Model of Enterohemorrhagic Escherichia coli Infection. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	19
14	Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions. Nucleic Acids Research, 2020, 48, e71-e71.	14.5	24
15	Treatment Strategies for Infections With Shiga Toxin-Producing Escherichia coli. Frontiers in Cellular and Infection Microbiology, 2020, 10, 169.	3.9	54
16	The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis. PLoS Genetics, 2020, 16, e1008275.	3.5	52
17	Variations in microbiota composition of laboratory mice influence Citrobacter rodentium infection via variable short-chain fatty acid production. PLoS Pathogens, 2020, 16, e1008448.	4.7	66
18	An RNA thermometer dictates production of a secreted bacterial toxin. PLoS Pathogens, 2020, 16, e1008184.	4.7	24

#	Article	IF	CITATIONS
19	Bread Feeding Is a Robust and More Physiological Enteropathogen Administration Method Compared to Oral Gavage. Infection and Immunity, 2020, 88, .	2.2	4
20	Title is missing!. , 2020, 16, e1008448.		0
21	Title is missing!. , 2020, 16, e1008448.		0
22	Title is missing!. , 2020, 16, e1008448.		0
23	Title is missing!. , 2020, 16, e1008448.		0
24	Phenotypic Diversification of Microbial Pathogens—Cooperating and Preparing for the Future. Journal of Molecular Biology, 2019, 431, 4645-4655.	4.2	36
25	Metabolome and transcriptome-wide effects of the carbon storage regulator A in enteropathogenic Escherichia coli. Scientific Reports, 2019, 9, 138.	3.3	28
26	Contribution of the Cpx envelope stress system to metabolism and virulence regulation in Salmonella enterica serovar Typhimurium. PLoS ONE, 2019, 14, e0211584.	2.5	19
27	Transcriptional and Post-transcriptional Regulatory Mechanisms Controlling Type III Secretion. Current Topics in Microbiology and Immunology, 2019, 427, 11-33.	1.1	5
28	A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact. PLoS Pathogens, 2019, 15, e1007813.	4.7	24
29	Discovering Yersinia–Host Interactions by Tissue Dual RNA-Seq. Methods in Molecular Biology, 2019, 2010, 99-116.	0.9	6
30	Comparative Transcriptomic Profiling of Yersinia enterocolitica O:3 and O:8 Reveals Major Expression Differences of Fitness- and Virulence-Relevant Genes Indicating Ecological Separation. MSystems, 2019, 4, .	3.8	8
31	The <i>Yersinia pseudotuberculosis</i> Cpx envelope stress system contributes to transcriptional activation of <i>rovM</i> . Virulence, 2019, 10, 37-57.	4.4	6
32	Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents. Pharmaceutical Research, 2019, 36, 22.	3.5	15
33	Phenotypic heterogeneity: a bacterial virulence strategy. Microbes and Infection, 2018, 20, 570-577.	1.9	37
34	The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine. Journal of Biological Chemistry, 2018, 293, 8672-8690.	3.4	573
35	Regulation of host–pathogen interactions via the post-transcriptional Csr/Rsm system. Current Opinion in Microbiology, 2018, 41, 58-67.	5.1	29
36	Yersinia pseudotuberculosis modulates regulatory T cell stability via injection of yersinia outer proteins in a type III secretion system-dependent manner. European Journal of Microbiology and Immunology, 2018, 8, 101-106.	2.8	4

#	Article	IF	CITATIONS
37	Iron Regulation in Clostridioides difficile. Frontiers in Microbiology, 2018, 9, 3183.	3.5	49
38	Discovering RNA-Based Regulatory Systems for Yersinia Virulence. Frontiers in Cellular and Infection Microbiology, 2018, 8, 378.	3.9	3
39	Novel type of pilus associated with a Shiga-toxigenic <i>E. coli</i> hybrid pathovar conveys aggregative adherence and bacterial virulence. Emerging Microbes and Infections, 2018, 7, 1-16.	6.5	21
40	Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes. Nature Communications, 2018, 9, 3903.	12.8	69
41	Tracking gene expression and oxidative damage of O2-stressed Clostridioides difficile by a multi-omics approach. Anaerobe, 2018, 53, 94-107.	2.1	21
42	Loss of CNFY toxin-induced inflammation drives Yersinia pseudotuberculosis into persistency. PLoS Pathogens, 2018, 14, e1006858.	4.7	23
43	Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host–pathogen transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E791-E800.	7.1	154
44	Impact of CCR7 on T-Cell Response and Susceptibility to Yersinia pseudotuberculosis Infection. Journal of Infectious Diseases, 2017, 216, 752-760.	4.0	5
45	Yersinia pseudotuberculosis supports Th17 differentiation and limits de novo regulatory T cell induction by directly interfering with T cell receptor signaling. Cellular and Molecular Life Sciences, 2017, 74, 2839-2850.	5.4	13
46	Editorial overview: Cell regulation: New insights into the versatile regulatory processes governing bacterial life. Current Opinion in Microbiology, 2017, 36, v-viii.	5.1	2
47	RNA-based mechanisms of virulence control in <i>Enterobacteriaceae</i> . RNA Biology, 2017, 14, 471-487.	3.1	41
48	RNA Regulators: Formidable Modulators of Yersinia Virulence. Trends in Microbiology, 2017, 25, 19-34.	7.7	12
49	Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets. Frontiers in Microbiology, 2017, 8, 803.	3.5	114
50	Hypoxia Decreases Invasin-Mediated Yersinia enterocolitica Internalization into Caco-2 Cells. PLoS ONE, 2016, 11, e0146103.	2.5	17
51	A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence. PLoS Pathogens, 2016, 12, e1006091.	4.7	24
52	Mononuclear phagocytes contribute to intestinal invasion and dissemination of Yersinia enterocolitica. International Journal of Medical Microbiology, 2016, 306, 357-366.	3.6	16
53	Invasin-functionalized liposome nanocarriers improve the intracellular delivery of anti-infective drugs. RSC Advances, 2016, 6, 41622-41629.	3.6	12
54	Transcriptomic and Phenotypic Analysis Reveals New Functions for the Tat Pathway in Yersinia pseudotuberculosis. Journal of Bacteriology, 2016, 198, 2876-2886.	2.2	12

#	Article	IF	CITATIONS
55	Discovery of the first small-molecule CsrA–RNA interaction inhibitors using biophysical screening technologies. Future Medicinal Chemistry, 2016, 8, 931-947.	2.3	33
56	Temperature-responsive in vitro RNA structurome of <i>Yersinia pseudotuberculosis</i> . Proceedings of the United States of America, 2016, 113, 7237-7242.	7.1	78
57	Yersinia Type III Secretion System Master Regulator LcrF. Journal of Bacteriology, 2016, 198, 604-614.	2.2	44
58	Increased plasmid copy number is essential for <i>Yersinia</i> T3SS function and virulence. Science, 2016, 353, 492-495.	12.6	64
59	Regulatory principles governing Salmonella and Yersinia virulence. Frontiers in Microbiology, 2015, 6, 949.	3.5	48
60	Natural Killer Cells Mediate Protection against Yersinia pseudotuberculosis in the Mesenteric Lymph Nodes. PLoS ONE, 2015, 10, e0136290.	2.5	10
61	Anti-virulence Strategies to Target Bacterial Infections. Current Topics in Microbiology and Immunology, 2015, 398, 147-183.	1.1	141
62	Reprogramming of Yersinia from Virulent to Persistent Mode Revealed by Complex In Vivo RNA-seq Analysis. PLoS Pathogens, 2015, 11, e1004600.	4.7	65
63	Transcriptomic Profiling of Yersinia pseudotuberculosis Reveals Reprogramming of the Crp Regulon by Temperature and Uncovers Crp as a Master Regulator of Small RNAs. PLoS Genetics, 2015, 11, e1005087.	3.5	79
64	<i>Yersinia enterocolitica</i> -mediated degradation of neutrophil extracellular traps (NETs). FEMS Microbiology Letters, 2015, 362, fnv192.	1.8	25
65	Bacteriomimetic invasin-functionalized nanocarriers for intracellular delivery. Journal of Controlled Release, 2015, 220, 414-424.	9.9	23
66	Influence of PhoP and Intra-Species Variations on Virulence of Yersinia pseudotuberculosis during the Natural Oral Infection Route. PLoS ONE, 2014, 9, e103541.	2.5	15
67	Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae. Frontiers in Cellular and Infection Microbiology, 2014, 4, 146.	3.9	55
68	A direct link between the global regulator PhoP and the Csr regulon inY. pseudotuberculosisthrough the small regulatory RNA CsrC. RNA Biology, 2014, 11, 580-593.	3.1	26
69	Essential Role of Invasin for Colonization and Persistence of Yersinia enterocolitica in Its Natural Reservoir Host, the Pig. Infection and Immunity, 2014, 82, 960-969.	2.2	16
70	Unique virulence properties of Yersinia enterocolitica O:3 – An emerging zoonotic pathogen using pigs as preferred reservoir host. International Journal of Medical Microbiology, 2014, 304, 824-834.	3.6	27
71	The Pyruvate-Tricarboxylic Acid Cycle Node. Journal of Biological Chemistry, 2014, 289, 30114-30132.	3.4	53
72	Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiology, 2013, 8, 85-105.	2.0	33

#	Article	IF	CITATIONS
73	Bacterial invasion factors: Tools for crossing biological barriers and drug delivery?. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 242-250.	4.3	20
74	The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFY) Enhances Inflammation and Yop Delivery during Infection by Activation of Rho GTPases. PLoS Pathogens, 2013, 9, e1003746.	4.7	66
75	Human and Animal Isolates of Yersinia enterocolitica Show Significant Serotype-Specific Colonization and Host-Specific Immune Defense Properties. Infection and Immunity, 2013, 81, 4013-4025.	2.2	14
76	Concerted Actions of a Thermo-labile Regulator and a Unique Intergenic RNA Thermosensor Control Yersinia Virulence. PLoS Pathogens, 2012, 8, e1002518.	4.7	144
77	The Csr/Rsm system of Yersinia and related pathogens. RNA Biology, 2012, 9, 379-391.	3.1	87
78	Structural Basis for Intrinsic Thermosensing by the Master Virulence Regulator RovA of Yersinia. Journal of Biological Chemistry, 2012, 287, 35796-35803.	3.4	41
79	<i>In Vivo</i> -Induced InvA-Like Autotransporters Ifp and InvC of Yersinia pseudotuberculosis Promote Interactions with Intestinal Epithelial Cells and Contribute to Virulence. Infection and Immunity, 2012, 80, 1050-1064.	2.2	22
80	Unique Virulence Properties of Yersinia enterocolitica O:3. Advances in Experimental Medicine and Biology, 2012, 954, 281-287.	1.6	5
81	Crp Induces Switching of the CsrB and CsrC RNAs in Yersinia pseudotuberculosis and Links Nutritional Status to Virulence. Frontiers in Cellular and Infection Microbiology, 2012, 2, 158.	3.9	67
82	Regulation of Virulence Gene Expression by Regulatory RNA Elements in Yersinia pseudotuberculosis. Advances in Experimental Medicine and Biology, 2012, 954, 315-323.	1.6	6
83	Structure of the effector-binding domain of the LysR-type transcription factor RovM from <i>Yersinia pseudotuberculosis</i> . Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 81-90.	2.5	13
84	Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. Nucleic Acids Research, 2011, 39, 1294-1309.	14.5	51
85	Filamentous fungi in good shape: Microparticles for tailor-made fungal morphology and enhanced enzyme production. Bioengineered Bugs, 2011, 2, 100-104.	1.7	51
86	Unique Cell Adhesion and Invasion Properties of Yersinia enterocolitica O:3, the Most Frequent Cause of Human Yersiniosis. PLoS Pathogens, 2011, 7, e1002117.	4.7	57
87	Monitoring of Gene Expression in Bacteria during Infections Using an Adaptable Set of Bioluminescent, Fluorescent and Colorigenic Fusion Vectors. PLoS ONE, 2011, 6, e20425.	2.5	50
88	A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger. Applied Microbiology and Biotechnology, 2010, 86, 659-670.	3.6	27
89	Optimized bioprocess for production of fructofuranosidase by recombinant Aspergillus niger. Applied Microbiology and Biotechnology, 2010, 87, 2011-2024.	3.6	53
90	Expression and export: recombinant protein production systems for Aspergillus. Applied Microbiology and Biotechnology, 2010, 87, 1255-1270.	3.6	144

PETRA DERSCH

#	Article	IF	CITATIONS
91	Bioorthogonal metabolic glycoengineering of human larynx carcinoma (HEp-2) cells targeting sialic acid. Beilstein Journal of Organic Chemistry, 2010, 6, 24.	2.2	22
92	Intrinsic Thermal Sensing Controls Proteolysis of Yersinia Virulence Regulator RovA. PLoS Pathogens, 2009, 5, e1000435.	4.7	82
93	Yersinia outer protein YopE affects the actin cytoskeleton in Dictyostelium discoideumthrough targeting of multiple Rho family GTPases. BMC Microbiology, 2009, 9, 138.	3.3	17
94	Cell invasion ofYersinia pseudotuberculosisby invasin and YadA requires protein kinase C, phospholipase C-γ1 and Akt kinase. Cellular Microbiology, 2009, 11, 1782-1801.	2.1	22
95	Tailorâ€Made Fructooligosaccharides by a Combination of Substrate and Genetic Engineering. ChemBioChem, 2008, 9, 143-149.	2.6	40
96	A Csrâ€type regulatory system, including small nonâ€coding RNAs, regulates the global virulence regulator RovA of <i>Yersinia pseudotuberculosis</i> through RovM. Molecular Microbiology, 2008, 68, 1179-1195.	2.5	108
97	Metabolic flux analysis using stoichiometric models for Aspergillus niger: Comparison under glucoamylase-producing and non-producing conditions. Journal of Biotechnology, 2007, 132, 405-417.	3.8	17
98	Regulatory Elements Implicated in the Environmental Control of Invasin Expression in Enteropathogenic Yersinia. Advances in Experimental Medicine and Biology, 2007, 603, 156-166.	1.6	26
99	RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Molecular Microbiology, 2006, 62, 1469-1483.	2.5	121
100	Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3375-3380.	7.1	137
101	Studies of the Efficacy of Enterocoliticin, a Phage-Tail Like Bacteriocin, as Antimicrobial Agent Against Yersinia enterocolitica Serotype O3 in a Cell Culture System and in Mice. Zoonoses and Public Health, 2005, 52, 171-179.	1.4	27
102	Analysis of RovA, a Transcriptional Regulator of Yersinia pseudotuberculosis Virulence That Acts through Antirepression and Direct Transcriptional Activation*. Journal of Biological Chemistry, 2005, 280, 42423-42432.	3.4	47
103	ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biological Chemistry, 2005, 386, 1115-27.	2.5	78
104	Function and Regulation of the Transcriptional Activator RovA of Yersinia pseudotuberculosis. Advances in Experimental Medicine and Biology, 2004, 529, 285-287.	1.6	11
105	Cell invasion and IL-8 production pathways initiated by YadA of Yersinia pseudotuberculosis require common signalling molecules (FAK, c-Src, Ras) and distinct cell factors. Cellular Microbiology, 2004, 7, 63-77.	2.1	48
106	RovA is autoregulated and antagonizes H-NS-mediated silencing of invasin and rovA expression in Yersinia pseudotuberculosis. Molecular Microbiology, 2004, 53, 871-888.	2.5	121
107	Survival of environmental and host-associated stress. , 2003, , 37-74.		1

#	Article	IF	CITATIONS
109	The YadA Protein of Yersinia pseudotuberculosis Mediates High-Efficiency Uptake into Human Cells under Environmental Conditions in Which Invasin Is Repressed. Infection and Immunity, 2002, 70, 4880-4891.	2.2	110
110	Molecular and Cellular Mechanisms of Bacterial Entry into Host Cells. , 2002, 10, 183-209.		9
111	Two different open reading frames named slyA in the E. coli sequence databases. Trends in Microbiology, 2002, 10, 267-268.	7.7	7
112	Intimin from Shiga toxin-producing Escherichia coli and its isolated C-terminal domain exhibit different binding properties for Tir and a eukaryotic surface receptor. International Journal of Medical Microbiology, 2001, 290, 683-691.	3.6	15
113	Environmental control of invasin expression in <i>Yersinia pseudotuberculosis</i> is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. Molecular Microbiology, 2001, 41, 1249-1269.	2.5	103
114	Characterization of Enterocoliticin, a Phage Tail-Like Bacteriocin, and Its Effect on Pathogenic Yersinia enterocolitica Strains. Applied and Environmental Microbiology, 2001, 67, 5634-5642.	3.1	81
115	Signaling and invasin-promoted uptake via integrin receptors. Microbes and Infection, 2000, 2, 793-801.	1.9	108
116	An Immunoglobulin Superfamily-Like Domain Unique to the Yersinia pseudotuberculosis Invasin Protein Is Required for Stimulation of Bacterial Uptake via Integrin Receptors. Infection and Immunity, 2000, 68, 2930-2938.	2.2	54
117	Recombinant Soluble Human α3β1Integrin: Purification, Processing, Regulation, and Specific Binding to Laminin-5 and Invasin in a Mutually Exclusive Mannerâ€. Biochemistry, 1998, 37, 10945-10955.	2.5	109
118	Differential Effects of Integrin α Chain Mutations on Invasin and Natural Ligand Interaction. Journal of Biological Chemistry, 1998, 273, 31837-31843.	3.4	26
119	The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Molecular Genetics and Genomics, 1994, 245, 255-259.	2.4	99
120	Low-copy-number T7 vectors for selective gene expression and efficient protein overproduction inEscherichia coli. FEMS Microbiology Letters, 1994, 123, 19-26.	1.8	32
121	Synthesis of the <i>Escherichia coli</i> Kâ€12 nucleoidâ€associated DNAâ€binding protein Hâ€NS is subjected to growthâ€phase control and autoregulation. Molecular Microbiology, 1993, 8, 875-889.	2.5	181
122	The osmZ (bglY) gene encodes the DNA-binding protein H-NS (H1a), a component of the Escherichia coli K12 nucleoid. Molecular Genetics and Genomics, 1990, 224, 81-90.	2.4	122