


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1521989/publications.pdf Version: 2024-02-01



KAL TAO

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chemical Society Reviews, 2016, 45, 3935-3953.                                                          | 38.1 | 366       |
| 2  | Self-assembling peptide semiconductors. Science, 2017, 358, .                                                                                                                                                                          | 12.6 | 357       |
| 3  | Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks<br>as an advanced electrode for supercapacitors. Nanoscale, 2018, 10, 2735-2741.                                                     | 5.6  | 253       |
| 4  | Shish-kebab type MnCo2O4@Co3O4 nanoneedle arrays derived from MnCo-LDH@ZIF-67 for<br>high-performance supercapacitors and efficient oxygen evolution reaction. Chemical Engineering<br>Journal, 2018, 354, 875-884.                    | 12.7 | 205       |
| 5  | A Zinc Cobalt Sulfide Nanosheet Array Derived from a 2D Bimetallic Metal–Organic Frameworks for<br>Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2018, 24, 12584-12591.                                           | 3.3  | 194       |
| 6  | A metal–organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on Ni foam<br>with enhanced electrochemical performance for supercapacitors. Dalton Transactions, 2018, 47,<br>3496-3502.                         | 3.3  | 188       |
| 7  | Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors.<br>Chemical Engineering Journal, 2018, 350, 551-558.                                                                                     | 12.7 | 176       |
| 8  | MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Transactions, 2016, 45, 13311-13316.                                                                                       | 3.3  | 172       |
| 9  | Enhanced photocatalytic performance of BiOBr/NH <sub>2</sub> -MIL-125(Ti) composite for dye degradation under visible light. Dalton Transactions, 2016, 45, 17521-17529.                                                               | 3.3  | 171       |
| 10 | MOF–derived hollow double–shelled NiO nanospheres for high–performance supercapacitors.<br>Journal of Alloys and Compounds, 2018, 734, 1-8.                                                                                            | 5.5  | 152       |
| 11 | Photoactive properties of supramolecular assembled short peptides. Chemical Society Reviews, 2019, 48, 4387-4400.                                                                                                                      | 38.1 | 150       |
| 12 | Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like<br>structure. Nature Catalysis, 2019, 2, 977-985.                                                                                         | 34.4 | 142       |
| 13 | Formation of bimetallic metal–organic framework nanosheets and their derived porous<br>nickel–cobalt sulfides for supercapacitors. Dalton Transactions, 2018, 47, 5639-5645.                                                           | 3.3  | 127       |
| 14 | Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nature<br>Communications, 2018, 9, 3217.                                                                                                     | 12.8 | 122       |
| 15 | Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode<br>for asymmetric supercapacitors with high energy density. Dalton Transactions, 2019, 48, 4119-4123.                                | 3.3  | 122       |
| 16 | Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular<br>Self-Assembly. ACS Nano, 2019, 13, 7300-7309.                                                                                                | 14.6 | 121       |
| 17 | High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition. Chemical Engineering Journal, 2013, 220, 1-5.                                                                       | 12.7 | 118       |
| 18 | Construction of 2D ZIF-derived hierarchical and hollow NiCo-LDH "nanosheet-on-nanosheet―arrays<br>on reduced graphene oxide/Ni foam for boosted electrochemical energy storage. Journal of Alloys<br>and Compounds, 2021, 850, 156864. | 5.5  | 109       |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | ZIF-Derived Porous CoNi <sub>2</sub> S <sub>4</sub> on Intercrosslinked Polypyrrole Tubes for<br>High-Performance Asymmetric Supercapacitors. ACS Applied Energy Materials, 2021, 4, 4199-4207.                                                      | 5.1  | 108       |
| 20 | Ultrathin nanosheet-assembled hollow microplate CoMoO4 array derived from metal-organic<br>framework for supercapacitor with ultrahigh areal capacitance. Journal of Power Sources, 2019, 430,<br>51-59.                                             | 7.8  | 98        |
| 21 | In Situ Growth of Metal–Organic Framework on BiOBr 2D Material with Excellent Photocatalytic<br>Activity for Dye Degradation. Crystal Growth and Design, 2017, 17, 2309-2313.                                                                        | 3.0  | 97        |
| 22 | Recent advances in metal–organic framework-based electrode materials for supercapacitors. Dalton<br>Transactions, 2021, 50, 11701-11710.                                                                                                             | 3.3  | 93        |
| 23 | Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted<br>for Effective CO <sub>2</sub> Uptake at Low Pressures. ACS Applied Materials & Interfaces, 2016, 8,<br>18383-18392.                              | 8.0  | 90        |
| 24 | A hierarchical NiO/NiMn-layered double hydroxide nanosheet array on Ni foam for high performance supercapacitors. Dalton Transactions, 2017, 46, 7388-7391.                                                                                          | 3.3  | 88        |
| 25 | Hierarchical Two-Dimensional Conductive Metal–Organic Framework/Layered Double Hydroxide<br>Nanoarray for a High-Performance Supercapacitor. Inorganic Chemistry, 2018, 57, 6202-6205.                                                               | 4.0  | 86        |
| 26 | Construction of Ni-Co-Mn layered double hydroxide nanoflakes assembled hollow nanocages from bimetallic imidazolate frameworks for supercapacitors. Materials Research Bulletin, 2018, 106, 243-249.                                                 | 5.2  | 83        |
| 27 | Bioinspired Stable and Photoluminescent Assemblies for Power Generation. Advanced Materials, 2019, 31, e1807481.                                                                                                                                     | 21.0 | 82        |
| 28 | Solvent-Controlled Morphology of Amino-Functionalized Bimetal Metal–Organic Frameworks for<br>Asymmetric Supercapacitors. Inorganic Chemistry, 2020, 59, 11385-11395.                                                                                | 4.0  | 82        |
| 29 | Metal–Organic Framework Templated 3D Hierarchical<br>ZnCo <sub>2</sub> O <sub>4</sub> @Ni(OH) <sub>2</sub> Core–Shell Nanosheet Arrays for<br>Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2018, 24, 18106-18114.              | 3.3  | 79        |
| 30 | Inlaying ZIF-derived Co3S4 hollow nanocages on intertwined polypyrrole tubes conductive networks for high-performance supercapacitors. Electrochimica Acta, 2020, 341, 136042.                                                                       | 5.2  | 73        |
| 31 | Self-supported metal–organic framework-based nanostructures as binder-free electrodes for<br>supercapacitors. Nanoscale, 2022, 14, 2155-2166.                                                                                                        | 5.6  | 73        |
| 32 | Construction of NiCo <sub>2</sub> O <sub>4</sub> nanosheet-decorated leaf-like<br>Co <sub>3</sub> O <sub>4</sub> nanoarrays from metal–organic framework for high-performance<br>hybrid supercapacitors. Dalton Transactions, 2019, 48, 14156-14163. | 3.3  | 72        |
| 33 | Core–shell assembly of carbon nanofibers and a 2D conductive metal–organic framework as a<br>flexible free-standing membrane for high-performance supercapacitors. Inorganic Chemistry<br>Frontiers, 2019, 6, 1824-1830.                             | 6.0  | 70        |
| 34 | Stable and optoelectronic dipeptide assemblies for power harvesting. Materials Today, 2019, 30, 10-16.                                                                                                                                               | 14.2 | 62        |
| 35 | A hollow ceramic fiber supported ZIF-8 membrane with enhanced gas separation performance prepared by hot dip-coating seeding. Journal of Materials Chemistry A, 2013, 1, 13046.                                                                      | 10.3 | 60        |
| 36 | Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity<br>and High Piezoelectricity. ACS Nano, 2020, 14, 7025-7037.                                                                                    | 14.6 | 59        |

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Zeolitic imidazolate framework-derived Co <sub>3</sub> S <sub>4</sub> @Co(OH) <sub>2</sub><br>nanoarrays as self-supported electrodes for asymmetric supercapacitors. Inorganic Chemistry<br>Frontiers, 2019, 6, 1398-1404.                                      | 6.0  | 57        |
| 38 | Controlled synthesis of Pd–NiO@SiO <sub>2</sub> mesoporous core–shell nanoparticles and their<br>enhanced catalytic performance for p-chloronitrobenzene hydrogenation with H <sub>2</sub> .<br>Catalysis Science and Technology, 2015, 5, 405-414.              | 4.1  | 56        |
| 39 | In situ growth of ZIF-8 nanocrystals on layered double hydroxide nanosheets for enhanced CO <sub>2</sub> capture. Dalton Transactions, 2016, 45, 12632-12635.                                                                                                    | 3.3  | 55        |
| 40 | Metalâ€Organic Frameworksâ€Derived Porous In <sub>2</sub> O <sub>3</sub> Hollow Nanorod for<br>Highâ€Performance Ethanol Gas Sensor. ChemistrySelect, 2017, 2, 10918-10925.                                                                                      | 1.5  | 55        |
| 41 | Influence of Ovalbumin on CaCO <sub>3</sub> Precipitation during <i>in Vitro</i> Biomineralization.<br>Journal of Physical Chemistry B, 2010, 114, 5301-5308.                                                                                                    | 2.6  | 50        |
| 42 | Enhanced catalytic performance of molybdenum-doped mesoporous SBA-15 for metathesis of 1-butene and ethene to propene. Catalysis Science and Technology, 2014, 4, 4010-4019.                                                                                     | 4.1  | 50        |
| 43 | Hierarchical core–shell SiO <sub>2</sub> @PDA@BiOBr microspheres with enhanced<br>visible-light-driven photocatalytic performance. Dalton Transactions, 2017, 46, 11451-11458.                                                                                   | 3.3  | 49        |
| 44 | High-Efficiency Fluorescence through Bioinspired Supramolecular Self-Assembly. ACS Nano, 2020, 14, 2798-2807.                                                                                                                                                    | 14.6 | 49        |
| 45 | Co <sub>3</sub> S <sub>4</sub> Nanoplate Arrays Decorated with Oxygen-Deficient CeO <sub>2</sub><br>Nanoparticles for Supercapacitor Applications. ACS Applied Nano Materials, 2021, 4, 3033-3043.                                                               | 5.0  | 49        |
| 46 | Design of Mo-doped cobalt sulfide hollow nanocages from zeolitic imidazolate frameworks as advanced electrodes for supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 2178-2184.                                                                           | 6.0  | 48        |
| 47 | Short peptide-directed synthesis of one-dimensional platinum nanostructures with controllable morphologies. Scientific Reports, 2013, 3, 2565.                                                                                                                   | 3.3  | 45        |
| 48 | Hierarchical core–shell 2D MOF nanosheet hybrid arrays for high-performance hybrid<br>supercapacitors. Dalton Transactions, 2021, 50, 8179-8188.                                                                                                                 | 3.3  | 44        |
| 49 | Piezoelectric Peptide and Metabolite Materials. Research, 2019, 2019, 9025939.                                                                                                                                                                                   | 5.7  | 44        |
| 50 | Engineering coordination polymer-derived one-dimensional porous S-doped<br>Co <sub>3</sub> O <sub>4</sub> nanorods with rich oxygen vacancies as high-performance electrode<br>materials for hybrid supercapacitors. Dalton Transactions, 2020, 49, 10421-10430. | 3.3  | 42        |
| 51 | MOF-derived Bi <sub>2</sub> O <sub>3</sub> @C microrods as negative electrodes for advanced asymmetric supercapacitors. RSC Advances, 2020, 10, 14107-14112.                                                                                                     | 3.6  | 41        |
| 52 | Development of platinum-based bimodal pore catalyst for CO2 reforming of CH4. Catalysis Today, 2010,<br>153, 150-155.                                                                                                                                            | 4.4  | 40        |
| 53 | Fabrication of 2D/2D nanosheet heterostructures of ZIF-derived Co <sub>3</sub> S <sub>4</sub> and g-C <sub>3</sub> N <sub>4</sub> for asymmetric supercapacitors with superior cycling stability. Dalton Transactions, 2020, 49, 14017-14029.                    | 3.3  | 40        |
| 54 | Accelerated charge transfer in water-layered peptide assemblies. Energy and Environmental Science, 2020. 13. 96-101.                                                                                                                                             | 30.8 | 39        |

| #  | Article                                                                                                                                                                                                                            | IF                | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 55 | Tanghulu-like NiO microcubes on Co3O4 nanowires arrays anchored on Ni foam with improved electrochemical performances for supercapacitors. Journal of Alloys and Compounds, 2018, 748, 496-503.                                    | 5.5               | 38           |
| 56 | Conductive 2D Metalâ€Organic Frameworks Decorated on Layered Double Hydroxides Nanoflower<br>Surface for Highâ€Performance Supercapacitor. ChemistrySelect, 2018, 3, 13596-13602.                                                  | 1.5               | 35           |
| 57 | Heterostructure of metal–organic framework-derived straw-bundle-like CeO2 decorated with (Ni,) Tj ETQq1 1 (                                                                                                                        | ).784314 ı<br>6.1 | rg₿Ţ /Overl⊙ |
| 58 | Chemical and spatial promotional effects of bimodal pore catalysts for methane dry reforming.<br>Chemical Engineering Journal, 2011, 170, 258-263.                                                                                 | 12.7              | 33           |
| 59 | Stringing metal–organic framework-derived hollow Co3S4 nanopolyhedra on V2O5 nanowires for<br>high-performance supercapacitors. Applied Surface Science, 2022, 600, 154076.                                                        | 6.1               | 33           |
| 60 | Multiporous Supramolecular Microspheres for Artificial Photosynthesis. Chemistry of Materials, 2017, 29, 4454-4460.                                                                                                                | 6.7               | 32           |
| 61 | Controllable In Situ Transformation of Layered Double Hydroxides into Ultrathin Metal–Organic<br>Framework Nanosheet Arrays for Energy Storage. Inorganic Chemistry, 2022, 61, 3832-3842.                                          | 4.0               | 32           |
| 62 | Microwave-assisted synthesis of pillared Ni-based metal–organic framework and its derived<br>hierarchical NiO nanoparticles for supercapacitors. Journal of Materials Science: Materials in<br>Electronics, 2018, 29, 14697-14704. | 2.2               | 31           |
| 63 | Cobalt-Borate Nanoarray: An Efficient and Durable Electrocatalyst for Water Oxidation under Benign<br>Conditions. ACS Applied Materials & Interfaces, 2017, 9, 15383-15387.                                                        | 8.0               | 30           |
| 64 | Core–shell assembly of Co <sub>3</sub> O <sub>4</sub> @NiO-ZnO nanoarrays as battery-type<br>electrodes for high-performance supercapatteries. Inorganic Chemistry Frontiers, 2019, 6, 2481-2487.                                  | 6.0               | 30           |
| 65 | Metal-organic frameworks derived porous carbon coated SiO composite as superior anode material for lithium ion batteries. Journal of Alloys and Compounds, 2018, 765, 512-519.                                                     | 5.5               | 29           |
| 66 | NiCo <sub>2</sub> S <sub>4</sub> @Ni <sub>3</sub> S <sub>2</sub> hybrid nanoarray on Ni foam for<br>high-performance supercapacitors. New Journal of Chemistry, 2019, 43, 7344-7349.                                               | 2.8               | 29           |
| 67 | Construction of S-doped ZnCo2O4 microspindles with enhanced electrochemical performance for supercapacitors. Vacuum, 2020, 181, 109740.                                                                                            | 3.5               | 29           |
| 68 | Construction of Hierarchical 2D PANI/Ni <sub>3</sub> S <sub>2</sub> Nanosheet Arrays on Ni Foam for<br>Highâ€Performance Asymmetric Supercapacitors. Batteries and Supercaps, 2020, 3, 370-375.                                    | 4.7               | 29           |
| 69 | Boosting the energy storage performance of MOF-derived Co <sub>3</sub> S <sub>4</sub> nanoarrays<br><i>via</i> sulfur vacancy and surface engineering. Chemical Communications, 2022, 58, 6243-6246.                               | 4.1               | 29           |
| 70 | MOF-derived hierarchical core–shell hollow<br>Co <sub>3</sub> S <sub>4</sub> @NiCo <sub>2</sub> O <sub>4</sub> nanosheet arrays for asymmetric<br>supercapacitors. Dalton Transactions, 2022, 51, 4406-4413.                       | 3.3               | 27           |
| 71 | Optical property modulation of Fmoc group by pH-dependent self-assembly. RSC Advances, 2015, 5, 73914-73918.                                                                                                                       | 3.6               | 25           |
| 72 | Metal-Organosulfide Coordination Polymer Nanosheet Array as a Battery-Type Electrode for an Asymmetric Supercapacitor. Inorganic Chemistry, 2020, 59, 7360-7369.                                                                   | 4.0               | 25           |

| #  | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Sol–gel auto-combustion synthesis of Ni–CexZr1â^'xO2 catalysts for carbon dioxide reforming of<br>methane. RSC Advances, 2013, 3, 22285.                                                                                                                                  | 3.6  | 24        |
| 74 | Enhanced catalytic performance for metathesis reactions over ordered tungsten and aluminum co-doped mesoporous KIT-6 catalysts. New Journal of Chemistry, 2015, 39, 7971-7978.                                                                                            | 2.8  | 24        |
| 75 | Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nature Communications, 2019, 10, 5256.                                                                                                                          | 12.8 | 24        |
| 76 | Design of trimetallic sulfide hollow nanocages from metal–organic frameworks as electrode<br>materials for supercapacitors. Dalton Transactions, 2021, 50, 15260-15266.                                                                                                   | 3.3  | 24        |
| 77 | Enhanced Capacitance Performance by Coupling 2D Conductive Metal–Organic Frameworks and<br>Conducting Polymers for Hybrid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 9534-9541.                                                                              | 5.1  | 24        |
| 78 | Studying structure and dynamics of self-assembled peptide nanostructures using fluorescence and super resolution microscopy. Chemical Communications, 2017, 53, 7294-7297.                                                                                                | 4.1  | 23        |
| 79 | Controlled Preparation of Hollow and Porous Co <sub>9</sub> S <sub>8</sub> Microplate Arrays for<br>High-Performance Hybrid Supercapacitors. Inorganic Chemistry, 2020, 59, 11174-11183.                                                                                  | 4.0  | 23        |
| 80 | Precisely designing bimodal catalyst structure to trap cobalt nanoparticles inside mesopores and its application in Fischer-Tropsch synthesis. Chemical Engineering Journal, 2016, 306, 784-790.                                                                          | 12.7 | 22        |
| 81 | MOF-assisted construction of a Co <sub>9</sub> S <sub>8</sub> @Ni <sub>3</sub> S <sub>2</sub> /ZnS<br>microplate array with ultrahigh areal specific capacity for advanced supercapattery. Dalton<br>Transactions, 2020, 49, 10535-10544.                                 | 3.3  | 22        |
| 82 | Tandem catalytic conversion of 1-butene and ethene to propene over combined mesoporous W-FDU-12 and MgO catalysts. RSC Advances, 2015, 5, 23981-23989.                                                                                                                    | 3.6  | 19        |
| 83 | Bi <sub>2</sub> S <sub>3</sub> nanorod-stacked hollow microtubes self-assembled from<br>bismuth-based metal–organic frameworks as advanced negative electrodes for hybrid<br>supercapacitors. Dalton Transactions, 2019, 48, 9057-9061.                                   | 3.3  | 19        |
| 84 | Bioinspired Supramolecular Packing Enables High Thermoâ€Sustainability. Angewandte Chemie -<br>International Edition, 2020, 59, 19037-19041.                                                                                                                              | 13.8 | 18        |
| 85 | Interfacial adsorption of lipopeptidesurfactants at the silica/water interface studied by neutron reflection. Soft Matter, 2011, 7, 1777-1788.                                                                                                                            | 2.7  | 17        |
| 86 | Design of Controllable Bio-Inspired Chiroptic Self-Assemblies. Biomacromolecules, 2016, 17, 2937-2945.                                                                                                                                                                    | 5.4  | 17        |
| 87 | Hollow and Hierarchical Cobalt–Metal Organic Framework@CoCr <sub>2</sub> O <sub>4</sub><br>Microplate Array as a Batteryâ€Type Electrode for Highâ€Performance Hybrid Supercapacitors.<br>ChemElectroChem, 2020, 7, 437-444.                                              | 3.4  | 17        |
| 88 | Controllable Transformation of Metal–Organic Framework Nanosheets into Oxygen Vacancy<br>Ni <sub><i>x</i></sub> Co <sub>3–<i>x</i></sub> O <sub>4</sub> Arrays for Ultrahigh-Capacitance<br>Supercapacitors with Long Lifespan. Inorganic Chemistry, 2022, 61, 4283-4291. | 4.0  | 17        |
| 89 | Zeolitic imidazolate framework derived ZnCo <sub>2</sub> O <sub>4</sub> hollow tubular nanofibers for long-life supercapacitors. RSC Advances, 2020, 10, 13922-13928.                                                                                                     | 3.6  | 16        |
| 90 | High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes. Dalton Transactions, 2017, 46, 16821-16827.                                                                                                      | 3.3  | 15        |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid. Korean Journal of Chemical Engineering, 2018, 35, 110-117.                          | 2.7  | 15        |
| 92  | Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials. Protein and Peptide Letters, 2020, 27, 688-697.                                                                                          | 0.9  | 15        |
| 93  | Metathesis of 1-butene and ethene to propene over mesoporous W-KIT-6 catalysts: the influence of<br>Si/W ratio. Journal of Porous Materials, 2015, 22, 613-620.                                                  | 2.6  | 13        |
| 94  | Metal–Organic Framework-Derived Bi <sub>2</sub> O <sub>3</sub> /C and<br>NiCo <sub>2</sub> S <sub>4</sub> Hollow Nanofibers for Asymmetric Supercapacitors. ACS Applied<br>Nano Materials, 2021, 4, 11895-11906. | 5.0  | 13        |
| 95  | Mesoporous Ni2CoS4 electrode materials derived from coordination polymer bricks for high-performance supercapacitor. Journal of Solid State Chemistry, 2019, 271, 239-245.                                       | 2.9  | 11        |
| 96  | Enhanced Hydrogen Production from Steam Reforming of Vegetable Oil over Bimodal<br>ZrO <sub>2</sub> â€&iO <sub>2</sub> Supported Ni Catalyst. ChemistrySelect, 2017, 2, 527-532.                                 | 1.5  | 10        |
| 97  | A Self-Bleaching Electrochromic Mirror Based on Metal Organic Frameworks. Materials, 2021, 14, 2771.                                                                                                             | 2.9  | 10        |
| 98  | Transformation of Au3M/SiO2 (MÂ=ÂNi, Co, Fe) into Au–MO x /SiO2 Catalysts for the Reduction of p-Nitrophenol. Catalysis Letters, 2014, 144, 1001-1008.                                                           | 2.6  | 9         |
| 99  | Entropy Method for Structural Health Monitoring Based on Statistical Cause and Effect Analysis of Acoustic Emission and Vibration Signals. IEEE Access, 2019, 7, 172515-172525.                                  | 4.2  | 9         |
| 100 | Entropic Phase Transitions with Stable Twisted Intermediates of Bioâ€Inspired Selfâ€Assembly. Chemistry -<br>A European Journal, 2016, 22, 15237-15241.                                                          | 3.3  | 8         |
| 101 | Preparation of Polydopamine-Modified 3D Interconnected Macroporous Silica for Laccase<br>Immobilization. Macromolecular Research, 2018, 26, 616-622.                                                             | 2.4  | 7         |
| 102 | Bioinspired Suprahelical Frameworks as Scaffolds for Artificial Photosynthesis. ACS Applied<br>Materials & Interfaces, 2020, 12, 45192-45201.                                                                    | 8.0  | 7         |
| 103 | An anthropomorphic fuzzy model for the time-spatial assessment of sandstone seepage damage.<br>Automation in Construction, 2020, 109, 102989.                                                                    | 9.8  | 6         |
| 104 | Modulating vectored non-covalent interactions for layered assembly with engineerable properties.<br>Bio-Design and Manufacturing, 2022, 5, 529-539.                                                              | 7.7  | 6         |
| 105 | Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant.<br>Scientific Reports, 2015, 5, 17509.                                                                            | 3.3  | 4         |
| 106 | Preparation of Hierarchical Porous Sâ€1/silica Monoliths by Steaming Crystallization. ChemistrySelect, 2019, 4, 3741-3744.                                                                                       | 1.5  | 4         |
| 107 | EDTA-mimicking amino acid–metal ion coordination for multifunctional packings. Journal of<br>Materials Chemistry A, 2021, 9, 20385-20394.                                                                        | 10.3 | 4         |
| 108 | Bioinspired Supramolecular Packing Enables High Thermo‧ustainability. Angewandte Chemie, 2020, 132,<br>19199-19203.                                                                                              | 2.0  | 2         |