Stanislav A Pshenichnyuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/152179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resonance electron attachment and long-lived negative ions of phthalimide and pyromellitic diimide. Journal of Chemical Physics, 2011, 135, 184301.	3.0	40
2	Electron attachment to some naphthoquinone derivatives: longâ€lived molecular anion formation. Rapid Communications in Mass Spectrometry, 2014, 28, 1580-1590.	1.5	36
3	Relation between Electron Scattering Resonances of Isolated NTCDA Molecules and Maxima in the Density of Unoccupied States of Condensed NTCDA Layers. Journal of Physical Chemistry A, 2012, 116, 761-766.	2.5	35
4	Electron affinity evaluation for nitrobenzene derivatives using negative ion lifetime data. Rapid Communications in Mass Spectrometry, 2015, 29, 910-912.	1.5	33
5	Can mitochondrial dysfunction be initiated by dissociative electron attachment to xenobiotics?. Physical Chemistry Chemical Physics, 2013, 15, 9125.	2.8	31
6	The Role of Free Electrons in Matrix-Assisted Laser Desorption/Ionization: Electron Capture by Molecules of α-Cyano-4-Hydroxycinnamic Acid. European Journal of Mass Spectrometry, 2004, 10, 477-486.	1.0	30
7	Electron capture negative ion mass spectra of some typical matrix-assisted laser desorption/ionization matrices. Rapid Communications in Mass Spectrometry, 2002, 16, 1760-1765.	1.5	29
8	Temporary anion states and dissociative electron attachment to nitrobenzene derivatives. International Journal of Mass Spectrometry, 2007, 264, 22-37.	1.5	29
9	Gas-phase dissociative electron attachment to flavonoids and possible similarities to their metabolic pathways. Physical Chemistry Chemical Physics, 2013, 15, 1588-1600.	2.8	29
10	Dissociative Electron Attachment to Resveratrol as a Likely Pathway for Generation of the H ₂ Antioxidant Species Inside Mitochondria. Journal of Physical Chemistry Letters, 2015, 6, 1104-1110.	4.6	26
11	Spectroscopic states of PTCDA negative ions and their relation to the maxima of unoccupied state density in the conduction band. Technical Physics, 2011, 56, 754-759.	0.7	25
12	Interconnections between dissociative electron attachment and electron-driven biological processes. International Reviews in Physical Chemistry, 2018, 37, 125-170.	2.3	25
13	Structure of vacant electronic states of an oxidized germanium surface upon deposition of perylene tetracarboxylic dianhydride films. Physics of the Solid State, 2016, 58, 377-381.	0.6	23
14	Temperature dependence of dissociative electron attachment to molecules of gentisic acid, hydroquinone and p-benzoquinone. International Journal of Mass Spectrometry, 2003, 227, 281-288.	1.5	22
15	A relation between energies of the short-lived negative ion states and energies of unfilled molecular orbitals for a series of bromoalkanes. Russian Chemical Bulletin, 2007, 56, 1268-1270.	1.5	22
16	Dissociative electron attachment to 2,4,6-trichloroanisole and 2,4,6-tribromoanisole molecules. Journal of Chemical Physics, 2017, 147, 234302.	3.0	22
17	Temperature dependencies of negative ions formation by capture of low-energy electrons for some typical MALDI matrices. International Journal of Mass Spectrometry, 2003, 227, 259-272.	1.5	21
18	Molecular anion formation in 9,10-anthraquinone: Dependence of the electron detachment rate on temperature and incident electron energy. Journal of Chemical Physics, 2010, 132, 244313.	3.0	21

#	Article	IF	CITATIONS
19	Temperature dependence of the mean autodetachment lifetime of thep-benzoquinone molecular radical anion. Rapid Communications in Mass Spectrometry, 2006, 20, 383-386.	1.5	20
20	Electron attachment to antipyretics: Possible implications of their metabolic pathways. Journal of Chemical Physics, 2012, 136, 234307.	3.0	20
21	Hypothesis for the Mechanism of Ascorbic Acid Activity in Living Cells Related to Its Electron-Accepting Properties. Journal of Physical Chemistry A, 2016, 120, 2667-2676.	2.5	19
22	Temperature dependence of mean autodetachment lifetime of molecular negative ion of p-benzoquinone molecule. Chemical Physics, 2004, 298, 263-266.	1.9	17
23	Degradation of gas phase decabromodiphenyl ether by resonant interaction with low-energy electrons. Physical Chemistry Chemical Physics, 2011, 13, 9293.	2.8	17
24	Low-Energy Electron Interaction with Melatonin and Related Compounds. Journal of Physical Chemistry B, 2017, 121, 3965-3974.	2.6	17
25	Conduction band electronic states of ultrathin layers of thiophene/phenylene co-oligomers on an oxidized silicon surface. Journal of Electron Spectroscopy and Related Phenomena, 2019, 235, 40-45.	1.7	17
26	4-Bromobiphenyl: Long-lived molecular anion formation and competition between electron detachment and dissociation. Journal of Chemical Physics, 2019, 150, 114304.	3.0	17
27	Complex fragmentation pathways of rhodanine and rhodanine-3-acetic acid upon resonant capture of low-energy electrons. International Journal of Mass Spectrometry, 2010, 294, 93-102.	1.5	16
28	Resonance Electron Attachment to Tetracyanoquinodimethane. Journal of Physical Chemistry A, 2014, 118, 6810-6818.	2.5	16
29	Low-energy electron interaction with retusin extracted from Maackia amurensis: towards a molecular mechanism of the biological activity of flavonoids. Physical Chemistry Chemical Physics, 2015, 17, 16805-16812.	2.8	16
30	Dissociative Electron Attachment to Anthralin to Model Its Biochemical Reactions. Journal of Physical Chemistry Letters, 2014, 5, 2916-2921.	4.6	15
31	State of the art in dissociative electron attachment spectroscopy and its prospects. Physics-Uspekhi, 2022, 65, 163-188.	2.2	15
32	Electron Attachment to Dye-Sensitized Solar Cell Components: Rhodanine and Rhodanine-3-acetic Acid. Journal of Physical Chemistry C, 2010, 114, 1725-1732.	3.1	13
33	Electron attachment to indole and related molecules. Journal of Chemical Physics, 2013, 139, 184305.	3.0	13
34	Internal conversion as the main stabilization mechanism for long-lived negative molecular ions. Technical Physics, 2014, 59, 1277-1285.	0.7	13
35	Electron attachment to the phthalide molecule. Journal of Chemical Physics, 2015, 142, 174308.	3.0	13
36	Violation of frozen shell approximation in dissociative electron capture by halogenated anthraquinones. Rapid Communications in Mass Spectrometry, 2001, 15, 1869-1878.	1.5	12

#	Article	IF	CITATIONS
37	Dissociative electron attachment in selected haloalkanes. Rapid Communications in Mass Spectrometry, 2006, 20, 1097-1103.	1.5	12
38	Electronic properties of the interface between hexadecafluoro copper phthalocyanine and unsubstituted copper phthalocyanine films. Semiconductors, 2013, 47, 956-961.	0.5	11
39	Long-lived negative ion formation by Alq3. International Journal of Mass Spectrometry, 2003, 230, 41-44.	1.5	10
40	Resonance electron attachment to plant hormones and its likely connection with biochemical processes. Journal of Chemical Physics, 2014, 140, 034313.	3.0	10
41	Resonance electron interaction with five-membered heterocyclic compounds: Vibrational Feshbach resonances and hydrogen-atom stripping. Physical Review A, 2019, 100, .	2.5	10
42	Electron stimulated ring opening in diphenylphthalide dicarboxylic acid: Its likely role in the unique properties of phthalide-based materials. Journal of Chemical Physics, 2019, 151, 214309.	3.0	10
43	Field emission energy distributions of electrons from tungsten tip emitters coated with diamond-like film prepared by ion-beam deposition. Diamond and Related Materials, 2004, 13, 125-132.	3.9	9
44	Low-Energy Electron Capture by 6-Aza-2-thiothymine:  Investigations by Electron Attachment and Electron Transmission Spectroscopies. Journal of Physical Chemistry A, 2007, 111, 11837-11842.	2.5	9
45	Resonance capture of electrons by electroactive organic molecules. Russian Journal of Physical Chemistry B, 2010, 4, 1014-1027.	1.3	9
46	Role of Resonance Electron Attachment in Phytoremediation of Halogenated Herbicides. Journal of Physical Chemistry B, 2016, 120, 12098-12104.	2.6	9
47	Can the Electron-Accepting Properties of Odorants Be Involved in Their Recognition by the Olfactory System?. Journal of Physical Chemistry Letters, 2018, 9, 2320-2325.	4.6	9
48	ETS and DEAS Studies of the Reduction of Xenobiotics in Mitochondrial Intermembrane Space. Methods in Molecular Biology, 2015, 1265, 285-305.	0.9	9
49	Interruption of the inner rotation initiated in isolated electron-driven molecular rotors. Physical Review A, 2012, 86, .	2.5	8
50	Why Can Unnatural Electron Acceptors Protect Photosynthesizing Organisms but Kill the Others?. Journal of Physical Chemistry B, 2017, 121, 749-757.	2.6	8
51	Structural rearrangements as relaxation pathway for molecular negative ions formed via vibrational Feshbach resonance. Physical Chemistry Chemical Physics, 2020, 22, 16150-16156.	2.8	8
52	Thermal electron capture by some halopropanes. Radiation Physics and Chemistry, 2007, 76, 1017-1025.	2.8	7
53	Dissociative electron attachment to some spinochromes: Fragment anion formation. International Journal of Mass Spectrometry, 2017, 412, 26-37.	1.5	7
54	Generation and Fragmentation of Phthalide Derivative Negative Ions. Technical Physics, 2018, 63, 1054-1059.	0.7	6

#	Article	IF	CITATIONS
55	Dissociative electron attachment to 3-benzelidenephthalide and phenolphthalein molecules. Journal of Chemical Physics, 2019, 151, 134302.	3.0	6
56	Dissociative Electron Attachment to 2,3,6,7,10,11-Hexabromotriphenylene. Journal of Physical Chemistry A, 2020, 124, 690-694.	2.5	6
57	Non-covalent anion structures in dissociative electron attachment to some brominated biphenyls. Journal of Chemical Physics, 2021, 155, 244302.	3.0	6
58	Thermal electron capture by some chlorobromopropanes. European Physical Journal D, 2005, 35, 323-326.	1.3	5
59	Empty-Level Structure and Reactive Species Produced by Dissociative Electron Attachment totert-Butyl Peroxybenzoate. Journal of Physical Chemistry A, 2012, 116, 3585-3592.	2.5	5
60	Electron attachment to chlorinated alcohols. Chemical Physics Letters, 2015, 634, 203-209.	2.6	5
61	Fragmentation of chlorpyrifos by thermal electron attachment: a likely relation to its metabolism and toxicity. Physical Chemistry Chemical Physics, 2018, 20, 22272-22283.	2.8	5
62	5-Nitro-2,4-Dichloropyrimidine as an Universal Model for Low-Energy Electron Processes Relevant for Radiosensitization. International Journal of Molecular Sciences, 2020, 21, 8173.	4.1	5
63	Electron attachment spectroscopy as a tool to study internal rotations in isolated negative ions. Physical Review Research, 2020, 2, .	3.6	5
64	Title is missing!. Russian Chemical Bulletin, 2003, 52, 385-390.	1.5	4
65	Estimating electron affinity from the lifetime of negative molecular ions: Cycloheptatriene derivatives. Russian Journal of Physical Chemistry A, 2017, 91, 915-920.	0.6	4
66	Microsecond dynamics of molecular negative ions formed by low-energy electron attachment to fluorinated tetracyanoquinodimethane. Journal of Chemical Physics, 2021, 155, 184301.	3.0	4
67	Interpreting electron transmission spectroscopy and negative ion mass spectrometry data using a spherical potential well model. Journal of Experimental and Theoretical Physics, 2007, 104, 357-362.	0.9	3
68	Negative ion mass spectra of some phenalenone derivatives. International Journal of Mass Spectrometry, 2008, 277, 62-69.	1.5	3
69	Electronic structure of the conduction band of the interface region of ultrathin films of substituted perylenedicarboximides and the germanium oxide surface. Physics of the Solid State, 2016, 58, 1901-1905.	0.6	3
70	Density of Electronic States in the Conduction Band of Ultrathin Films of Naphthalenedicarboxylic Anhydride and Naphthalenetetracarboxylic Dianhydride on the Surface of Oxidized Silicon. Physics of the Solid State, 2018, 60, 804-808.	0.6	3
71	Unoccupied Electron States and the Formation of Interface between Films of Dimethyl-Substituted Thiophene–Phenylene Coolygomers and Oxidized Silicon Surface. Physics of the Solid State, 2018, 60, 1029-1034.	0.6	3
72	The Unoccupied Electronic States of the Ultrathin Diphenylphthalide Films on the Surface of the Highly Oriented Pyrolytic Graphite. Physics of the Solid State, 2019, 61, 1922-1926.	0.6	3

#	Article	IF	CITATIONS
73	Atomic Composition and Morphology of Thin Films of Resveratrol Deposited on Oxidized Silicon and Polycrystalline Gold Surfaces. Physics of the Solid State, 2019, 61, 468-473.	0.6	3
74	lonizing radiation and natural constituents of living cells: Low-energy electron interaction with coenzyme Q analogs. Journal of Chemical Physics, 2020, 153, 111103.	3.0	3
75	Unoccupied Electronic States and Potential Barrier in Films of Substituted Diphenylphthalides on the Surface of Highly Ordered Pyrolytic Graphite. Physics of the Solid State, 2021, 63, 362-367.	0.6	3
76	Resonance electron attachment to natural polyphenolic compounds and their biological activity. Letters on Materials, 2015, 5, 504-512.	0.7	3
77	Effect of a thin diamondlike coating on the emission characteristics of tungsten tips. Technical Physics Letters, 2000, 26, 79-80.	0.7	2
78	Energy distributions of electrons emitted from tungsten tips covered by diamond-like films. Technical Physics, 2004, 49, 623-629.	0.7	2
79	An electron transmission spectrometer with a trochoidal electron monochromator. Instruments and Experimental Techniques, 2013, 56, 76-79.	0.5	2
80	Atomic composition and stability of Langmuir–Blodgett monolayers based on siloxane dimer of quaterthiophene on the surface of polycrystalline gold. Physics of the Solid State, 2017, 59, 2491-2496.	0.6	2
81	Propagation of Low-Energy Electrons and the Density of Unoccupied States in Ultrathin TCNQ Layers on the Oxidized Silicon Surface. Physics of the Solid State, 2020, 62, 1245-1250.	0.6	2
82	Unoccupied Electron States of Ultrathin Films of Thiophene–Phenylene Cooligomers on the Surface of Polycrystalline Gold. Physics of the Solid State, 2020, 62, 1960-1966.	0.6	2
83	Chemical purity of diamond-like films produced by ion-beam deposition. Technical Physics, 2001, 46, 1303-1306.	0.7	1
84	On the delay mechanism of Cl 2 â^' diatomic anion dissociation up to the microsecond timescale. JETP Letters, 2010, 92, 295-299.	1.4	1
85	Negative ion mass spectra of hydrophilic naphtoquinones. Journal of Analytical Chemistry, 2013, 68, 1162-1164.	0.9	1
86	Low-energy electron transmission for the analysis of the interface barrier formation and the density of the unoccupied electronic states in the ultra-thin layers of fluorinated copper-phthalocyanine. Organic Photonics and Photovoltaics, 2015, 3, .	1.3	1
87	Resonance electron capture by the molecules of α- and β-C(14)-methoxy isomers of 10,12-dehydro-8,9-seco-8,9-dioxolappaconine and its oxo derivative. High Energy Chemistry, 2016, 50, 433-437.	0.9	1
88	Density of unoccupied electronic states of vapor-deposited films of dioctyl-substituted and diphenyl-substituted perylenedicarboximides. Physics of the Solid State, 2017, 59, 403-407.	0.6	1
89	Dissociative Electron Attachment to 2,6- and 2,5-Dihydroxyacetophenone. Journal of Analytical Chemistry, 2019, 74, 1296-1304.	0.9	1
90	Density of Vacant Electronic States of Semiconductor Films of Molecules of Naphthalene and Diphenylphthalide Modified by Electroactive Functional Groups. Physics of the Solid State, 2020, 62, 1256-1261.	0.6	1

#	Article	IF	CITATIONS
91	Electron Attachment to Isolated Molecules as a Probe to Understand Mitochondrial Reductive Processes. Methods in Molecular Biology, 2021, 2277, 101-124.	0.9	1
92	Dissociative Electron Attachment to Hexachlorobenzene. ChemPhysChem, 2022, 23, .	2.1	1
93	Field emission properties of diamond thin films. , 1996, , .		0
94	Energy distributions of electrons emitted from a diamond film under the action of a strong field. Technical Physics Letters, 1999, 25, 612-614.	0.7	0
95	Multiexponential model of metastable anions decay. Journal of Physics: Conference Series, 2012, 388, 052007.	0.4	0
96	Resonance electron interaction with heterocyclic compounds: vibrational Feshbach resonances and hydrogen atom stripping. Journal of Physics: Conference Series, 2020, 1412, 212003.	0.4	0
97	Doping of a Nonconjugated Polymer by an Organic Compound with Two Stable Energy States. Technical Physics, 2021, 66, 1319-1323.	0.7	Ο