
Nan-Ping Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1521437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validation of the effectiveness of SARS-CoV-2 vaccines in older adults in "real-world―settings. Immunity and Ageing, 2021, 18, 36.	4.2	6
2	DNA methylation signatures reveal that distinct combinations of transcription factors specify human immune cell epigenetic identity. Immunity, 2021, 54, 2465-2480.e5.	14.3	31
3	Sex differences in the association between antinuclear antibody positivity with diabetes and multimorbidity in older adults: Results from the Baltimore Longitudinal Study of Aging. Experimental Gerontology, 2020, 135, 110906.	2.8	8
4	TCR Repertoires of Thymic Conventional and Regulatory T Cells: Identification and Characterization of Both Unique and Shared TCR Sequences. Journal of Immunology, 2020, 204, 858-867.	0.8	2
5	Can an effective SARS-CoV-2 vaccine be developed for the older population?. Immunity and Ageing, 2020, 17, 8.	4.2	43
6	Lipid Microbubble–Conjugated Anti-CD3 and Anti-CD28 Antibodies (Microbubble-Based Human T Cell) Tj ETQc 2020, 4, 475-484.	0 0 0 rgB 1.8	/Overlock 2 4
7	Cellular aging over 13 years associated with incident antinuclear antibody positivity in the Baltimore Longitudinal Study of Aging. Journal of Autoimmunity, 2019, 105, 102295.	6.5	6
8	Expression and regulation of telomerase in human T cell differentiation, activation, aging and diseases. Cellular Immunology, 2019, 345, 103989.	3.0	33
9	Human T Cell Differentiation Negatively Regulates Telomerase Expression Resulting in Reduced Activation-Induced Proliferation and Survival. Frontiers in Immunology, 2019, 10, 1993.	4.8	27
10	Interpersonal-level discrimination indices, sociodemographic factors, and telomere length in African-Americans and Whites. Biological Psychology, 2019, 141, 1-9.	2.2	23
11	Research on immunity and ageing comes of age. Immunity and Ageing, 2019, 16, 8.	4.2	2
12	Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire. Nature Communications, 2019, 10, 1019.	12.8	72
13	Generation and Gene Expression of CD28â^'CD8 T Cells in Human. , 2019, , 553-571.		0
14	MicroRNA-125b Modulates Inflammatory Chemokine CCL4 Expression and Its Reduction May Cause CCL4 Increase in Circulation with Age. , 2019, , 1225-1239.		0
15	MicroRNA-125b Modulates Inflammatory Chemokine CCL4 Expression and Its Reduction May Cause CCL4 Increase in Circulation with Age. , 2018, , 1-15.		0
16	Ezh2 Regulates Activation-Induced CD8+ T Cell Cycle Progression via Repressing Cdkn2a and Cdkn1c Expression. Frontiers in Immunology, 2018, 9, 549.	4.8	42
17	Multiple forms of discrimination, social status, and telomere length: Interactions within race. Psychoneuroendocrinology, 2018, 98, 119-126.	2.7	31

18 Generation and Gene Expression of CD28â^'CD8 T Cells in Human. , 2018, , 1-19.

0

NAN-PING WENG

#	Article	IF	CITATIONS
19	Sequence and Structural Analyses Reveal Distinct and Highly Diverse Human CD8 + TCR Repertoires to Immunodominant Viral Antigens. Cell Reports, 2017, 19, 569-583.	6.4	134
20	Structural basis for clonal diversity of the human T-cell response to a dominant influenza virus epitope. Journal of Biological Chemistry, 2017, 292, 18618-18627.	3.4	33
21	Telomere Shortening, Inflammatory Cytokines, and Anti-Cytomegalovirus Antibody Follow Distinct Age-Associated Trajectories in Humans. Frontiers in Immunology, 2017, 8, 1027.	4.8	48
22	Relationship between spontaneous γH2AX foci formation and progenitor functions in circulating hematopoietic stem and progenitor cells among atomic-bomb survivors. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 802, 59-65.	1.7	3
23	Changes in blood lymphocyte numbers with age in vivo and their association with the levels of cytokines/cytokine receptors. Immunity and Ageing, 2016, 13, 24.	4.2	75
24	TCRβ repertoire of CD4+ and CD8+ T cells is distinct in richness, distribution, and CDR3 amino acid composition. Journal of Leukocyte Biology, 2016, 99, 505-513.	3.3	50
25	Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors. Oncotarget, 2016, 7, 38988-38998.	1.8	25
26	Norepinephrine preferentially modulates memory CD8 T cell function inducing inflammatory cytokine production and reducing proliferation in response to activation. Brain, Behavior, and Immunity, 2015, 46, 168-179.	4.1	112
27	Age-associated telomere attrition of lymphocytes <i>inÂvivo</i> is co-ordinated with changes in telomerase activity, composition of lymphocyte subsets and health conditions. Clinical Science, 2015, 128, 367-377.	4.3	110
28	Telomere Length as an Indicator of the Robustness of B- and T-Cell Response to Influenza in Older Adults. Journal of Infectious Diseases, 2015, 212, 1261-1269.	4.0	69
29	MicroRNAâ€125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age. Aging Cell, 2015, 14, 200-208.	6.7	45
30	Structural Basis for Clonal Diversity of the Public T Cell Response to a Dominant Human Cytomegalovirus Epitope. Journal of Biological Chemistry, 2015, 290, 29106-29119.	3.4	41
31	T Cell Aging: A Review of the Transcriptional Changes Determined from Genome-Wide Analysis. Frontiers in Immunology, 2013, 4, 121.	4.8	50
32	Homeostasis of lymphocytes and monocytes in frequent blood donors. Frontiers in Immunology, 2012, 3, 271.	4.8	10
33	Telomeres and immune competency. Current Opinion in Immunology, 2012, 24, 470-475.	5.5	62
34	The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nature Reviews Immunology, 2012, 12, 306-315.	22.7	274
35	Genome-wide Analysis of Histone Methylation Reveals Chromatin State-Based Regulation of Gene Transcription and Function of Memory CD8+ T Cells. Immunity, 2009, 30, 912-925.	14.3	256
36	CD28â^' T cells: their role in the age-associated decline of immune function. Trends in Immunology, 2009, 30, 306-312.	6.8	514

NAN-PING WENG

#	Article	IF	CITATIONS
37	IL-21 preferentially enhances IL-15-mediated homeostatic proliferation of human CD28+ CD8 memory T cells throughout the adult age span. Journal of Leukocyte Biology, 2009, 87, 43-49.	3.3	32
38	Generation and Gene Expression of CD28-CD8 T-cells in Human. , 2009, , 327-341.		1
39	Telomere and adaptive immunity. Mechanisms of Ageing and Development, 2008, 129, 60-66.	4.6	82
40	Telomerase Is Involved in IL-7-Mediated Differential Survival of Naive and Memory CD4+ T Cells. Journal of Immunology, 2008, 180, 3775-3781.	0.8	25
41	Histone Acetylation Facilitates Rapid and Robust Memory CD8 T Cell Response through Differential Expression of Effector Molecules (Eomesodermin and Its Targets: Perforin and Granzyme B). Journal of Immunology, 2008, 180, 8102-8108.	0.8	151
42	Accelerated Telomere Erosion Is Associated with a Declining Immune Function of Caregivers of Alzheimer's Disease Patients. Journal of Immunology, 2007, 179, 4249-4254.	0.8	368
43	Gene expression and generation of CD28â^'CD8 T cells mediated by interleukin 15. Experimental Gerontology, 2007, 42, 412-415.	2.8	29
44	Aging of the Immune System: How Much Can the Adaptive Immune System Adapt?. Immunity, 2006, 24, 495-499.	14.3	416
45	Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response. Blood, 2006, 108, 3363-3370.	1.4	60
46	Generation and Growth of CD28nullCD8+ Memory T Cells Mediated by IL-15 and Its Induced Cytokines. Journal of Immunology, 2006, 177, 7802-7810.	0.8	102
47	Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T-cell aging. Immunological Reviews, 2005, 205, 190-206.	6.0	80
48	IL-15 Activates Telomerase and Minimizes Telomere Loss and May Preserve the Replicative Life Span of Memory CD8+ T Cells In Vitro. Journal of Immunology, 2005, 174, 4019-4024.	0.8	65
49	Stable telomere length and telomerase expression from naıÌ`ve to memory B-lymphocyte differentiation. Mechanisms of Ageing and Development, 2003, 124, 427-432.	4.6	35
50	Regulation of telomerase expression in human lymphocytes. Seminars in Immunopathology, 2002, 24, 23-33.	4.0	32
51	Telomeres in T and B cells. Nature Reviews Immunology, 2002, 2, 699-706.	22.7	280
52	ILâ€15 Is a Growth Factor and an Activator of CD8 Memory T Cells. Annals of the New York Academy of Sciences, 2002, 975, 46-56.	3.8	79
53	Identification of Maze Learning-Associated Genes in Rat Hippocampus by cDNA Microarray. Journal of Molecular Neuroscience, 2001, 17, 397-404.	2.3	28
54	Augmentation in Expression of Activation-Induced Genes Differentiates Memory from Naive CD4+ T Cells and Is a Molecular Mechanism for Enhanced Cellular Response of Memory CD4+ T Cells. Journal of Immunology, 2001, 166, 7335-7344.	0.8	56

NAN-PING WENG

#	Article	IF	CITATIONS
55	Cutting Edge: Telomerase Activation in Human T Lymphocytes Does Not Require Increase in Telomerase Reverse Transcriptase (hTERT) Protein But Is Associated with hTERT Phosphorylation and Nuclear Translocation. Journal of Immunology, 2001, 166, 4826-4830.	0.8	213
56	Lineage-Specific Telomere Shortening and Unaltered Capacity for Telomerase Expression in Human T and B Lymphocytes with Age. Journal of Immunology, 2000, 165, 1191-1196.	0.8	180
57	Regulation of Telomere Length and Telomerase in T and B Cells. Immunity, 1998, 9, 151-157.	14.3	155
58	Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunological Reviews, 1997, 160, 43-54.	6.0	187