
Georg A Nagel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1520955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optogenetic tools for manipulation of cyclic nucleotides functionally coupled to cyclic nucleotideâ€gated channels. British Journal of Pharmacology, 2022, 179, 2519-2537.	2.7	6
2	Characterization and Modification of Light-Sensitive Phosphodiesterases from Choanoflagellates. Biomolecules, 2022, 12, 88.	1.8	4
3	PMRT1, a <i>Plasmodium</i> -Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. MBio, 2022, 13, e0062322.	1.8	7
4	Visual function restoration with a highly sensitive and fast Channelrhodopsin in blind mice. Signal Transduction and Targeted Therapy, 2022, 7, 104.	7.1	10
5	Optogenetic control of plant growth by a microbial rhodopsin. Nature Plants, 2021, 7, 144-151.	4.7	35
6	An engineered membrane-bound guanylyl cyclase with light-switchable activity. BMC Biology, 2021, 19, 54.	1.7	8
7	Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics. Membranes, 2021, 11, 287.	1.4	9
8	mem-iLID, a fast and economic protein purification method. Bioscience Reports, 2021, 41, .	1.1	3
9	Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel <i>Gt</i> ACR1. Science Advances, 2021, 7, .	4.7	28
10	Advances and prospects of rhodopsin-based optogenetics in plant research. Plant Physiology, 2021, 187, 572-589.	2.3	6
11	Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling. Nature, 2021, 597, 245-249.	13.7	63
12	PACmn for improved optogenetic control of intracellular cAMP. BMC Biology, 2021, 19, 227.	1.7	13
13	Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates. Frontiers in Molecular Biosciences, 2021, 8, 750528.	1.6	8
14	Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20920-20925.	3.3	46
15	Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. ELife, 2020, 9, .	2.8	38
16	Action potentials in Xenopus oocytes triggered by blue light. Journal of General Physiology, 2020, 152,	0.9	2
17	Mutated Channelrhodopsins with Increased Sodium and Calcium Permeability. Applied Sciences (Switzerland), 2019, 9, 664.	1.3	25
18	Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition. BMC Biology, 2019, 17, 95	1.7	25

GEORG A NAGEL

#	Article	IF	CITATIONS
19	A novel rhodopsin phosphodiesterase from <i>Salpingoeca rosetta</i> shows light-enhanced substrate affinity. Biochemical Journal, 2018, 475, 1121-1128.	1.7	28
20	Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases. BMC Biology, 2018, 16, 144.	1.7	35
21	Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition. Frontiers in Neuroscience, 2018, 12, 643.	1.4	42
22	Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 à structure of the adenylyl cyclase domain. Nature Communications, 2018, 9, 2046.	5.8	55
23	Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans. PLoS ONE, 2018, 13, e0191802.	1.1	44
24	Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons. ELife, 2017, 6, .	2.8	138
25	Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nature Communications, 2015, 6, 8046.	5.8	95
26	Optogenetics: 10 years after ChR2 in neurons—views from the community. Nature Neuroscience, 2015, 18, 1202-1212.	7.1	122
27	Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13972-13977.	3.3	182
28	A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium <i>Microcoleus chthonoplastes</i> PCC 7420. Biochemical Journal, 2013, 455, 359-365.	1.7	61
29	Degradation of channelopsin-2 in the absence of retinal and degradation resistance in certain mutants. Biological Chemistry, 2013, 394, 271-280.	1.2	38
30	From channelrhodopsins to optogenetics. EMBO Molecular Medicine, 2013, 5, 173-176.	3.3	84
31	Light Modulation of Cellular cAMP by a Small Bacterial Photoactivated Adenylyl Cyclase, bPAC, of the Soil Bacterium Beggiatoa. Journal of Biological Chemistry, 2011, 286, 1181-1188.	1.6	337
32	Optogenetic Long-Term Manipulation of Behavior and Animal Development. PLoS ONE, 2011, 6, e18766.	1.1	55
33	PACα- an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. Journal of Neurochemistry, 2011, 116, 616-625.	2.1	82
34	Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature, 2011, 469, 407-410.	13.7	165
35	Microbial rhodopsins in the spotlight. Current Opinion in Neurobiology, 2010, 20, 610-616.	2.0	41
36	Structural Guidance of the Photocycle of Channelrhodopsin-2 by an Interhelical Hydrogen Bond. Biochemistry, 2010, 49, 267-278.	1.2	203

GEORG A NAGEL

#	Article	IF	CITATIONS
37	Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PACα). Biological Chemistry, 2009, 390, 1105-11.	1.2	14
38	Conformational Changes of Channelrhodopsin-2. Journal of the American Chemical Society, 2009, 131, 7313-7319.	6.6	107
39	Characterization and Application of Natural Light-Sensitive Proteins. , 2009, , 47-56.		1
40	Spectral Characteristics of the Photocycle of Channelrhodopsin-2 and Its Implication for Channel Function. Journal of Molecular Biology, 2008, 375, 686-694.	2.0	235
41	Negative charged threonine 95 of c-Jun is essential for c-Jun N-terminal kinase-dependent phosphorylation of threonine 91/93 and stress-induced c-Jun biological activity. International Journal of Biochemistry and Cell Biology, 2008, 40, 307-316.	1.2	16
42	Increases in Intracellular Calcium Triggered by Channelrhodopsin-2 Potentiate the Response of Metabotropic Glutamate Receptor mGluR7. Journal of Biological Chemistry, 2008, 283, 24300-24307.	1.6	22
43	Fast manipulation of cellular cAMP level by light in vivo. Nature Methods, 2007, 4, 39-42.	9.0	237
44	Multimodal fast optical interrogation of neural circuitry. Nature, 2007, 446, 633-639.	13.7	1,602
45	Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae. Current Biology, 2006, 16, 1741-1747.	1.8	557
46	Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 2005, 8, 1263-1268.	7.1	4,110
47	Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses. Current Biology, 2005, 15, 2279-2284.	1.8	869
48	Protein kinaseâ€independent activation of CFTR by phosphatidylinositol phosphates. EMBO Reports, 2004, 5, 85-90.	2.0	26
49	CFTR, investigated with the two-electrode voltage-clamp technique: the importance of knowing the series resistance. Journal of Cystic Fibrosis, 2004, 3, 109-111.	0.3	8
50	"Vision―in Single-Celled Algae. Physiology, 2004, 19, 133-137.	1.6	76
51	Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13940-13945.	3.3	2,348
52	Probing the Sensory Rhodopsin II Binding Domain of its Cognate Transducer by Calorimetry and Electrophysiology. Journal of Molecular Biology, 2003, 330, 1203-1213.	2.0	57
53	Apparent affinity of CFTR for ATP is increased by continuous kinase activity. FEBS Letters, 2003, 535, 141-146.	1.3	20
54	Different Affinities of Inhibitors to the Outwardly and Inwardly Directed Substrate Binding Site of Organic Cation Transporter 2. Molecular Pharmacology, 2003, 64, 1037-1047.	1.0	64

GEORG A NAGEL

#	Article	IF	CITATIONS
55	Quantitative Analysis of ATP-Dependent Gating of CFTR. , 2002, 70, 67-98.		2
56	Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae. Science, 2002, 296, 2395-2398.	6.0	1,013
57	Nonâ€specific activation of the epithelial sodium channel by the CFTR chloride channel. EMBO Reports, 2001, 2, 249-254.	2.0	59
58	The Voltage-Dependent Proton Pumping in Bacteriorhodopsin Is Characterized by Optoelectric Behavior. Biophysical Journal, 2001, 81, 2059-2068.	0.2	56
59	Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. American Journal of Physiology - Renal Physiology, 2001, 281, F454-F468.	1.3	103
60	Mechanism of Electrogenic Cation Transport by the Cloned Organic Cation Transporter 2 from Rat. Journal of Biological Chemistry, 2000, 275, 29413-29420.	1.6	80
61	Dual Effects of Adp and Adenylylimidodiphosphate on Cftr Channel Kinetics Show Binding to Two Different Nucleotide Binding Sites. Journal of General Physiology, 1999, 114, 55-70.	0.9	54
62	Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 263-274.	1.4	29
63	A Reevaluation of Substrate Specificity of the Rat Cation Transporter rOCT1. Journal of Biological Chemistry, 1997, 272, 31953-31956.	1.6	79
64	Na+,K+-ATPase Pump Currents Activated by an ATP Concentration Jump Comparison of Studies with Purified Membrane fragments and Giant excised Patches. Annals of the New York Academy of Sciences, 1997, 834, 270-279.	1.8	0
65	Transient Currents of Na+/K+-ATPase in Giant Patches from Guinea Pig Cardiomyocytes Induced by ATP Concentration Jumps or Voltage Pulses. Annals of the New York Academy of Sciences, 1997, 834, 435-438.	1.8	1
66	Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping. FEBS Letters, 1995, 377, 263-266.	1.3	82
67	The protein kinase A-regulated cardiac Clâ^' channel resembles the cystic fibrosis transmembrane conductance regulator. Nature, 1992, 360, 81-84.	13.7	170
68	Cardiac Na+-Ca2+Exchange System in Giant Membrane Patches. Annals of the New York Academy of Sciences, 1991, 639, 126-139.	1.8	42