
M C Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1520943/publications.pdf Version: 2024-02-01

МССНАМ

#	Article	IF	CITATIONS
1	Role of Epithelial–Endothelial Cell Interaction in the Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Clinical Infectious Diseases, 2022, 74, 199-209.	5.8	15
2	SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature, 2022, 603, 715-720.	27.8	577
3	Human liver organoid derived intra-hepatic bile duct cells support SARS-CoV-2 infection and replication. Scientific Reports, 2022, 12, 5375.	3.3	18
4	Tropism of SARS-CoV-2, SARS-CoV, and Influenza Virus in Canine Tissue Explants. Journal of Infectious Diseases, 2021, 224, 821-830.	4.0	5
5	Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir. ACS Central Science, 2021, 7, 792-802.	11.3	59
6	Introduction of ORF3a-Q57H SARS-CoV-2 Variant Causing Fourth Epidemic Wave of COVID-19, Hong Kong, China. Emerging Infectious Diseases, 2021, 27, 1492-1495.	4.3	33
7	Phenotypic and genetic characterization of MERS coronaviruses from Africa to understand their zoonotic potential. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
8	Risk Assessment for Highly Pathogenic Avian Influenza A(H5N6/H5N8) Clade 2.3.4.4 Viruses. Emerging Infectious Diseases, 2021, 27, 2619-2627.	4.3	12
9	Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nature Microbiology, 2021, 6, 1455-1465.	13.3	7
10	Tropism of the novel human betacoronavirus lineage C virus in human ex vivo and in vitro cultures: potential transmissibility and pathogenesis in humans (abridged secondary publication). Hong Kong Medical Journal, 2021, 27 Suppl 2, 28-32.	0.1	0
11	SARS-CoV-2 infection in conjunctival tissue – Authors' reply. Lancet Respiratory Medicine,the, 2020, 8, e58.	10.7	8
12	Heterosubtypic Protection Induced by a Live Attenuated Influenza Virus Vaccine Expressing Galactose-α-1,3-Galactose Epitopes in Infected Cells. MBio, 2020, 11, .	4.1	10
13	Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respiratory Medicine,the, 2020, 8, 687-695.	10.7	437
14	Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe, The, 2020, 1, e10.	7.3	1,479
15	Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research, 2020, 178, 104786.	4.1	737
16	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	4.7	29
17	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
18	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0

M C CHAN

#	Article	IF	CITATIONS
19	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		Ο
20	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
21	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
22	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
23	Therapeutic Implications of Human Umbilical Cord Mesenchymal Stromal Cells in Attenuating Influenza A(H5N1) Virus–Associated Acute Lung Injury. Journal of Infectious Diseases, 2019, 219, 186-196.	4.0	102
24	A52 MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Virus Evolution, 2019, 5, .	4.9	1
25	Tropism of influenza B viruses in human respiratory tract explants and airway organoids. European Respiratory Journal, 2019, 54, 1900008.	6.7	34
26	Risk Assessment of the Tropism and Pathogenesis of the Highly Pathogenic Avian Influenza A/H7N9 Virus Using Ex Vivo and In Vitro Cultures of Human Respiratory Tract. Journal of Infectious Diseases, 2019, 220, 578-588.	4.0	9
27	MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proceedings of the United States of America, 2018, 115, 3144-3149.	7.1	142
28	Effect of interferon alpha and cyclosporine treatment separately and in combination on Middle East Respiratory Syndrome Coronavirus (MERS-CoV) replication in a human in-vitro and ex-vivo culture model. Antiviral Research, 2018, 155, 89-96.	4.1	51
29	Production of amphiregulin and recovery from influenza is greater in males than females. Biology of Sex Differences, 2018, 9, 24.	4.1	40
30	Tropism, replication competence, and innate immune responses of influenza virus: an analysis of human airway organoids and ex-vivo bronchus cultures. Lancet Respiratory Medicine,the, 2018, 6, 846-854.	10.7	99
31	Tropism and innate host responses of influenza A/H5N6 virus: an analysis of <i>exÂvivo</i> and <i>in vitro</i> cultures of the human respiratory tract. European Respiratory Journal, 2017, 49, 1601710.	6.7	27
32	Cell Cycle-independent Role of Cyclin D3 in Host Restriction of Influenza Virus Infection. Journal of Biological Chemistry, 2017, 292, 5070-5088.	3.4	37
33	Replication of H9 influenza viruses in the human ex vivo respiratory tract, and the influence of neuraminidase on virus release. Scientific Reports, 2017, 7, 6208.	3.3	7
34	Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells. Scientific Reports, 2016, 6, 18941.	3.3	21
35	Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures. Scientific Reports, 2016, 6, 35401.	3.3	18
36	Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3. Scientific Reports, 2016, 6, 28593.	3.3	29

M C CHAN

#	Article	IF	CITATIONS
37	Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3621-3626.	7.1	174
38	Modulation of sterol biosynthesis regulates viral replication and cytokine production in influenza A virus infected human alveolar epithelial cells. Antiviral Research, 2015, 119, 1-7.	4.1	13
39	Amino Acid Substitutions in Polymerase Basic Protein 2 Gene Contribute to the Pathogenicity of the Novel A/H7N9 Influenza Virus in Mammalian Hosts. Journal of Virology, 2014, 88, 3568-3576.	3.4	146
40	Anti-inflammatory and antiviral effects of indirubin derivatives in influenza A (H5N1) virus infected primary human peripheral blood-derived macrophages and alveolar epithelial cells. Antiviral Research, 2014, 106, 95-104.	4.1	34
41	Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: an in-vitro and ex-vivo study. Lancet Respiratory Medicine,the, 2014, 2, 813-822.	10.7	86
42	Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses. Virus Research, 2013, 178, 133-145.	2.2	42
43	Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro cultures of the human respiratory tract. Lancet Respiratory Medicine,the, 2013, 1, 534-542.	10.7	88
44	Molecular Detection of Human H7N9 Influenza A Virus Causing Outbreaks in China. Clinical Chemistry, 2013, 59, 1062-1067.	3.2	15
45	Glycomic Analysis of Human Respiratory Tract Tissues and Correlation with Influenza Virus Infection. PLoS Pathogens, 2013, 9, e1003223.	4.7	209
46	Tropism of and Innate Immune Responses to the Novel Human Betacoronavirus Lineage C Virus in Human <i>Ex Vivo</i> Respiratory Organ Cultures. Journal of Virology, 2013, 87, 6604-6614.	3.4	158
47	Infection of swine <i>ex vivo</i> tissues with avian viruses including H7N9 and correlation with glycomic analysis. Influenza and Other Respiratory Viruses, 2013, 7, 1269-1282.	3.4	30
48	Replication and pathogenesis of avian influenza A (H5N1) virus infection in polarised human bronchial and alveolar epithelium. Hong Kong Medical Journal, 2013, 19 Suppl 4, 24-8.	0.1	2
49	Comparable Fitness and Transmissibility between Oseltamivir-Resistant Pandemic 2009 and Seasonal H1N1 Influenza Viruses with the H275Y Neuraminidase Mutation. Journal of Virology, 2012, 86, 10558-10570.	3.4	33
50	Proinflammatory Cytokine Response and Viral Replication in Mouse Bone Marrow Derived Macrophages Infected with Influenza H1N1 and H5N1 Viruses. PLoS ONE, 2012, 7, e51057.	2.5	17
51	Entry of Influenza A Virus with a α2,6-Linked Sialic Acid Binding Preference Requires Host Fibronectin. Journal of Virology, 2012, 86, 10704-10713.	3.4	54
52	Oral and Poster Manuscripts. Influenza and Other Respiratory Viruses, 2011, 5, 54-442.	3.4	5
53	Tissue Tropism of Swine Influenza Viruses and Reassortants in <i>Ex Vivo</i> Cultures of the Human Respiratory Tract and Conjunctiva. Journal of Virology, 2011, 85, 11581-11587.	3.4	35
54	Amino Acid Residues 253 and 591 of the PB2 Protein of Avian Influenza Virus A H9N2 Contribute to Mammalian Pathogenesis. Journal of Virology, 2011, 85, 9641-9645.	3.4	65

M C CHAN

#	Article	IF	CITATIONS
55	Viral Replication and Innate Host Responses in Primary Human Alveolar Epithelial Cells and Alveolar Macrophages Infected with Influenza H5N1 and H1N1 Viruses. Journal of Virology, 2011, 85, 6844-6855.	3.4	144
56	H5N1 Influenza Virus–Induced Mediators Upregulate RIG-I in Uninfected Cells by Paracrine Effects Contributing to Amplified Cytokine Cascades. Journal of Infectious Diseases, 2011, 204, 1866-1878.	4.0	40
57	Replication and innate host response of influenza A virus in lung microvascular endothelial cells: new insights into systemic infection and pathogenesis. Influenza and Other Respiratory Viruses, 2011, 5, 287-288.	3.4	1
58	Differential onset of apoptosis in avian influenza H5N1 and seasonal H1N1 virus infected human bronchial and alveolar epithelial cells: an and study. Influenza and Other Respiratory Viruses, 2011, 5, 437-438.	3.4	5
59	The regional distribution of different types of influenza receptors in cultured human alveolar epithelial cells and correlation with infection. Influenza and Other Respiratory Viruses, 2011, 5, 436-437.	3.4	5
60	Replication of avian and seasonal influenza viruses in human bronchus and lung. Influenza and Other Respiratory Viruses, 2011, 5, 425-426.	3.4	1
61	Pathogenesis of SARS coronavirus infection using human lung epithelial cells: an in vitro model. Hong Kong Medical Journal, 2011, 17 Suppl 6, 31-5.	0.1	5
62	Systems-level comparison of host responses induced by pandemic and seasonal influenza A H1N1 viruses in primary human type I-like alveolar epithelial cells in vitro. Respiratory Research, 2010, 11, 147.	3.6	40
63	Influenza H5N1 and H1N1 Virus Replication and Innate Immune Responses in Bronchial Epithelial Cells Are Influenced by the State of Differentiation. PLoS ONE, 2010, 5, e8713.	2.5	85
64	DAS181, a sialidase fusion protein, protects human airway epithelium against influenza virus infection: an in vitro pharmacodynamic analysis. Journal of Antimicrobial Chemotherapy, 2010, 65, 275-284.	3.0	54
65	Tropism and Innate Host Responses of the 2009 Pandemic H1N1 Influenza Virus in ex Vivo and in Vitro Cultures of Human Conjunctiva and Respiratory Tract. American Journal of Pathology, 2010, 176, 1828-1840.	3.8	111
66	Influenza Virus Non-Structural Protein 1 (NS1) Disrupts Interferon Signaling. PLoS ONE, 2010, 5, e13927.	2.5	140
67	Full Factorial Analysis of Mammalian and Avian Influenza Polymerase Subunits Suggests a Role of an Efficient Polymerase for Virus Adaptation. PLoS ONE, 2009, 4, e5658.	2.5	53
68	Novel Pandemic Influenza A(H1N1) Viruses Are Potently Inhibited by DAS181, a Sialidase Fusion Protein. PLoS ONE, 2009, 4, e7788.	2.5	91
69	Viral Genetic Determinants of H5N1 Influenza Viruses That Contribute to Cytokine Dysregulation. Journal of Infectious Diseases, 2009, 200, 1104-1112.	4.0	46
70	DAS181 Inhibits H5N1 Influenza Virus Infection of Human Lung Tissues. Antimicrobial Agents and Chemotherapy, 2009, 53, 3935-3941.	3.2	66
71	Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells. Respiratory Research, 2009, 10, 102.	3.6	99
72	Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nature Medicine, 2007, 13, 147-149.	30.7	303

#	Article	IF	CITATIONS
73	Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respiratory Research, 2005, 6, 135.	3.6	442