Sofia Moco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1519088/publications.pdf Version: 2024-02-01

SOFIA MOCO

#	Article	IF	CITATIONS
1	Studying Metabolism by NMR-Based Metabolomics. Frontiers in Molecular Biosciences, 2022, 9, 882487.	3.5	26
2	Nicotinamide Riboside and Dihydronicotinic Acid Riboside Synergistically Increase Intracellular NAD+ by Generating Dihydronicotinamide Riboside. Nutrients, 2022, 14, 2752.	4.1	7
3	Biomarker-based validity of a food frequency questionnaire estimating intake in Brazilian children and adolescents. International Journal of Food Sciences and Nutrition, 2021, 72, 236-247.	2.8	7
4	Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. Nature Food, 2021, 2, 143-155.	14.0	57
5	Contribution of genetic ancestry and polygenic risk score in meeting vitamin B12 needs in healthy Brazilian children and adolescents. Scientific Reports, 2021, 11, 11992.	3.3	5
6	DNA Damage, n-3 Long-Chain PUFA Levels and Proteomic Profile in Brazilian Children and Adolescents. Nutrients, 2021, 13, 2483.	4.1	2
7	A Method to Monitor the NAD+ Metabolome—From Mechanistic to Clinical Applications. International Journal of Molecular Sciences, 2021, 22, 10598.	4.1	13
8	Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability?. European Journal of Nutrition, 2020, 59, 1275-1293.	3.9	110
9	SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nature Communications, 2020, 11, 5927.	12.8	35
10	Augmented mitochondrial energy metabolism is an early response to chronic glucose stress in human pancreatic beta cells. Diabetologia, 2020, 63, 2628-2640.	6.3	24
11	DNA damage is inversely associated to blood levels of DHA and EPA fatty acids in Brazilian children and adolescents. Food and Function, 2020, 11, 5115-5121.	4.6	6
12	AlpsNMR: an R package for signal processing of fully untargeted NMR-based metabolomics. Bioinformatics, 2020, 36, 2943-2945.	4.1	19
13	Resistance to lean mass gain in constitutional thinness in freeâ€living conditions is not overpassed by overfeeding. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1187-1199.	7.3	14
14	Metabo groups in response to micronutrient intervention: Pilot study. Food Science and Nutrition, 2020, 8, 683-693.	3.4	4
15	Metabolic Groups Related to Blood Vitamin Levels and Inflammatory Biomarkers in Brazilian Children and Adolescents. Journal of Nutritional Science and Vitaminology, 2020, 66, 515-525.	0.6	2
16	Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage. Nature Communications, 2019, 10, 4291.	12.8	30
17	A reduced form of nicotinamide riboside defines a new path for NAD+ biosynthesis and acts as an orally bioavailable NAD+ precursor. Molecular Metabolism, 2019, 30, 192-202.	6.5	89
18	Front cover: Vegan and Animal Meal Composition and Timing Influence Glucose and Lipid Related Postprandial Metabolic Profiles. Molecular Nutrition and Food Research, 2019, 63, 1970013.	3.3	3

SOFIA MOCO

#	Article	IF	CITATIONS
19	Vegan and animal meal composition and timing influence glucose and lipid related postprandial metabolic profiles. Molecular Nutrition and Food Research, 2019, 63, 1800568.	3.3	5
20	Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities. Nature Communications, 2019, 10, 5808.	12.8	159
21	Vitamin B2 and Folate Concentrations are Associated with ARA, EPA and DHA Fatty Acids in Red Blood Cells of Brazilian Children and Adolescents. Nutrients, 2019, 11, 2918.	4.1	16
22	Resveratrol and Its Human Metabolites—Effects on Metabolic Health and Obesity. Nutrients, 2019, 11, 143.	4.1	178
23	A computationally driven analysis of the polyphenol-protein interactome. Scientific Reports, 2018, 8, 2232.	3.3	59
24	AMPK promotes survival of câ€Mycâ€positive melanoma cells by suppressing oxidative stress. EMBO Journal, 2018, 37, .	7.8	34
25	A 48â€Hour Vegan Diet Challenge in Healthy Women and Men Induces a BRANCHâ€Chain Amino Acid Related, Health Associated, Metabolic Signature. Molecular Nutrition and Food Research, 2018, 62, 1700703.	3.3	25
26	Front cover: In Vitro Gut Metabolism of [U-13 C]-Quinic Acid, The Other Hydrolysis Product of Chlorogenic Acid. Molecular Nutrition and Food Research, 2018, 62, 1870094.	3.3	0
27	Menstrual cycle rhythmicity: metabolic patterns in healthy women. Scientific Reports, 2018, 8, 14568.	3.3	114
28	Validation of the Brazilian Healthy Eating Index-Revised Using Biomarkers in Children and Adolescents. Nutrients, 2018, 10, 154.	4.1	22
29	In Vitro Gut Metabolism of [Uâ€ ¹³ C]â€Quinic Acid, The Other Hydrolysis Product of Chlorogenic Acid. Molecular Nutrition and Food Research, 2018, 62, e1800396.	3.3	23
30	Optimized selection of liquid chromatography conditions for wide range analysis of natural compounds. Journal of Chromatography A, 2017, 1504, 91-104.	3.7	28
31	Role of sulfotransferases in resveratrol metabolism in human adipocytes. Molecular Nutrition and Food Research, 2017, 61, 1700020.	3.3	15
32	Ultra-high performance supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry as a performing tool for bioactive analysis. Journal of Chromatography A, 2016, 1450, 101-111.	3.7	56
33	Standardized LC×LC-ELSD Fractionation Procedure for the Identification of Minor Bioactives via the Enzymatic Screening of Natural Extracts. Journal of Natural Products, 2016, 79, 2856-2864.	3.0	7
34	Combining the full potential of UHPSFC-QToF/MS and UHPLC-QToF/MS to improve the workflow efficiency of both plant metabolic profiling and natural bioactive discovery. Planta Medica, 2016, 81, S1-S381.	1.3	1
35	Natural product research in the food context. Planta Medica, 2016, 81, S1-S381.	1.3	0
36	Improving the detection of plant bioactive compounds by coupling a semi-preparative 2D-LCxLC system to an HTS platform. Planta Medica, 2016, 81, S1-S381.	1.3	0

SOFIA MOCO

#	Article	IF	CITATIONS
37	Advanced technologies for exploring the chemical and functional properties of bioactive constituents in food. Planta Medica, 2016, 81, S1-S381.	1.3	0
38	Metabonomics in Clinical Practice. Molecular and Integrative Toxicology, 2015, , 25-44.	0.5	1
39	Can We Use Metabolomics to Understand Changes to Gut Microbiota Populations and Function? A Nutritional Perspective. Molecular and Integrative Toxicology, 2015, , 83-108.	0.5	6
40	Impact of breast-feeding and high- and low-protein formula on the metabolism and growth of infants from overweight and obese mothers. Pediatric Research, 2014, 75, 535-543.	2.3	52
41	Reprint of: Musculoskeletal system in the old age and the demand for healthy ageing biomarkers. Mechanisms of Ageing and Development, 2014, 136-137, 94-100.	4.6	9
42	Systems Biology Approaches for Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2014, 20, 2104-2114.	1.9	32
43	Musculoskeletal system in the old age and the demand for healthy ageing biomarkers. Mechanisms of Ageing and Development, 2013, 134, 541-547.	4.6	32
44	MetIDB: A Publicly Accessible Database of Predicted and Experimental ¹ H NMR Spectra of Flavonoids. Analytical Chemistry, 2013, 85, 8700-8707.	6.5	23
45	A Whole-Grain–Rich Diet Reduces Urinary Excretion of Markers of Protein Catabolism and Gut Microbiota Metabolism in Healthy Men after One Week. Journal of Nutrition, 2013, 143, 766-773.	2.9	40
46	Metabolomics in nutrition. , 2013, , 106-123.		0
47	Metabolomics perspectives in pediatric research. Pediatric Research, 2013, 73, 570-576.	2.3	58
48	High-Resolution Quantitative Metabolome Analysis of Urine by Automated Flow Injection NMR. Analytical Chemistry, 2013, 85, 5801-5809.	6.5	36
49	Topographical Body Fat Distribution Links to Amino Acid and Lipid Metabolism in Healthy Non-Obese Women. PLoS ONE, 2013, 8, e73445.	2.5	34
50	Metabolomics View on Gut Microbiome Modulation by Polyphenol-rich Foods. Journal of Proteome Research, 2012, 11, 4781-4790.	3.7	204
51	220 PFKFB4 is Essential for Prostate Cancer Cell Survival by Maintaining the Balance Between the Use of Glucose for Energy Generation and the Synthesis of Anti-oxidants. European Journal of Cancer, 2012, 48, S53-S54.	2.8	Ο
52	Specific Dietary Preferences Are Linked to Differing Gut Microbial Metabolic Activity in Response to Dark Chocolate Intake. Journal of Proteome Research, 2012, 11, 6252-6263.	3.7	44
53	Functional Metabolic Screen Identifies 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 as an Important Regulator of Prostate Cancer Cell Survival. Cancer Discovery, 2012, 2, 328-343.	9.4	174
54	Chemical Identification Strategies Using Liquid Chromatography-Photodiode Array-Solid-Phase Extraction-Nuclear Magnetic Resonance/Mass Spectrometry. Methods in Molecular Biology, 2011, 860, 287-316.	0.9	15

Sofia Moco

#	Article	IF	CITATIONS
55	Ultrahigh Performance Liquid Chromatographyâ^'Tandem Mass Spectrometry Method for Fast and Robust Quantification of Anionic and Aromatic Metabolites. Analytical Chemistry, 2010, 82, 4403-4412.	6.5	317
56	An inter-laboratory comparison demonstrates that [1H]-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection. Metabolomics, 2010, 6, 263-273.	3.0	86
57	LC-MS-SPE-NMR for the Isolation and Characterization of <i>neo</i> -Clerodane Diterpenoids from <i>Teucrium luteum</i> subsp. <i>flavovirens</i> . Journal of Natural Products, 2010, 73, 962-965.	3.0	30
58	Plant Micrometabolomics: The Analysis of Endogenous Metabolites Present in a Plant Cell or Tissue. Journal of Proteome Research, 2009, 8, 1694-1703.	3.7	72
59	Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L. Planta, 2009, 229, 1135-1146.	3.2	31
60	Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance. Metabolomics, 2008, 4, 202-215.	3.0	74
61	Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany, 2007, 58, 4131-4146.	4.8	189
62	Metabolomics technologies and metabolite identification. TrAC - Trends in Analytical Chemistry, 2007, 26, 855-866.	11.4	309
63	Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2007, 2, 778-791.	12.0	803
64	Building-Up a Comprehensive Database of Flavonoids Based on Nuclear Magnetic Resonance Data. Chromatographia, 2006, 64, 503-508.	1.3	32
65	A Liquid Chromatography-Mass Spectrometry-Based Metabolome Database for Tomato. Plant Physiology, 2006, 141, 1205-1218.	4.8	522
66	The lightâ€hyperresponsive high pigmentâ€2 dg mutation of tomato: alterations in the fruit metabolome. New Phytologist, 2005, 166, 427,438	7.3	207

New Phytologist, 2005, 166, 427-438.