Fujun Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/151902/publications.pdf

Version: 2024-02-01

57758 60623 7,312 81 44 81 citations h-index g-index papers 81 81 81 9443 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Poreâ€Forming Strategy Toward Porous Carbonâ€Based Substrates for High Performance Flexible Lithium Metal Full Batteries. Energy and Environmental Materials, 2023, 6, .	12.8	8
2	<scp>Heteroâ€Janus</scp> Nanofibers as an Ideal Framework for Promoting Waterâ€pollutant Photoreforming Hydrogen Evolution. Energy and Environmental Materials, 2023, 6, .	12.8	1
3	Oxidation of phthalate acid esters using hydrogen peroxide and polyoxometalate/graphene hybrids. Journal of Hazardous Materials, 2022, 422, 126867.	12.4	7
4	Anchoring bismuth oxybromo-iodide solid solutions on flexible electrospun polyacrylonitrile nanofiber mats for floating photocatalysis. Journal of Colloid and Interface Science, 2022, 608, 3178-3191.	9.4	13
5	Highly permeable WO3/CuWO4 heterostructure with 3D hierarchical porous structure for high-sensitive room-temperature visible-light driven gas sensor. Sensors and Actuators B: Chemical, 2022, 365, 131926.	7.8	26
6	Three-dimensional porous CuFe2O4 for visible-light-driven peroxymonosulfate activation with superior performance for the degradation of tetracycline hydrochloride. Chemical Engineering Journal, 2022, 445, 136616.	12.7	27
7	Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination. Journal of Hazardous Materials, 2021, 403, 124093.	12.4	75
8	Facile preparation of flexible polyacrylonitrile/BiOCl/BiOI nanofibers via SILAR method for effective floating photocatalysis. Journal of Sol-Gel Science and Technology, 2021, 97, 610-621.	2.4	12
9	A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination. Chemosphere, 2021, 280, 130719.	8.2	29
10	Flexible Allâ€Inorganic Roomâ€Temperature Chemiresistors Based on Fibrous Ceramic Substrate and Visibleâ€Lightâ€Powered Semiconductor Sensing Layer. Advanced Science, 2021, 8, e2102471.	11.2	21
11	Integrated structural design of polyaniline-modified nitrogen-doped hierarchical porous carbon nanofibers as binder-free electrodes toward all-solid-state flexible supercapacitors. Applied Surface Science, 2020, 501, 144001.	6.1	25
12	Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. Electrochimica Acta, 2020, 330, 135212.	5.2	38
13	Combination effects of ellagic acid with erlotinib in a Ba/ F3 cell line expressing EGFR H773_V774 insH mutation. Thoracic Cancer, 2020, 11, 2101-2111.	1.9	5
14	TiO ₂ /SrTiO ₃ /g-C ₃ N ₄ ternary heterojunction nanofibers: gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation. Nanoscale, 2020, 12, 8320-8329.	5.6	88
15	Discrete heterojunction nanofibers of BiFeO3/Bi2WO6: Novel architecture for effective charge separation and enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2020, 572, 257-268.	9.4	60
16	MoSe ₂ /TiO ₂ Nanofibers for Cycling Photocatalytic Removing Water Pollutants under UV–Vis–NIR Light. ACS Applied Nano Materials, 2020, 3, 2278-2287.	5.0	35
17	Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature. Sensors and Actuators B: Chemical, 2020, 317, 128194.	7.8	60
18	Highly electron-depleted ZnO/ZnFe2O4/Au hollow meshes as an advanced material for gas sensing application. Sensors and Actuators B: Chemical, 2019, 297, 126769.	7.8	42

#	Article	IF	CITATIONS
19	Hierarchically Porous In2O3/In2S3 Heterostructures as Micronano Photocatalytic Reactors Prepared by a Novel Polymer-Assisted Sol–Gel Freeze-Drying Method. Industrial & Engineering Chemistry Research, 2019, 58, 14106-14114.	3.7	25
20	ZnO/ZnFe ₂ O ₄ Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. ACS Applied Nano Materials, 2019, 2, 4879-4890.	5.0	38
21	Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. Sensors and Actuators B: Chemical, 2019, 285, 495-503.	7.8	82
22	Direct Z-scheme heterostructure of p-CuAl2O4/n-Bi2WO6 composite nanofibers for efficient overall water splitting and photodegradation. Journal of Colloid and Interface Science, 2019, 550, 170-179.	9.4	71
23	Reusable and Flexible g-C ₃ N ₄ /Ag ₃ PO ₄ /Polyacrylonitrile Heterojunction Nanofibers for Photocatalytic Dye Degradation and Oxygen Evolution. ACS Applied Nano Materials, 2019. 2. 3081-3090.	5.0	58
24	Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sensors and Actuators B: Chemical, 2018, 258, 436-446.	7.8	61
25	Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis. Journal of Colloid and Interface Science, 2018, 525, 187-195.	9.4	40
26	Immobilization of ZnO/polyaniline heterojunction on electrospun polyacrylonitrile nanofibers and enhanced photocatalytic activity. Materials Chemistry and Physics, 2018, 214, 507-515.	4.0	35
27	Controllable preparation of three-dimensional porous WO3 with enhanced visible light photocatalytic activity via a freeze-drying method. Journal of Materials Science: Materials in Electronics, 2018, 29, 9605-9612.	2.2	4
28	Molybdenum diselenide nanosheet/carbon nanofiber heterojunctions: Controllable fabrication and enhanced photocatalytic properties with a broad-spectrum response from visible to infrared light. Journal of Colloid and Interface Science, 2018, 518, 1-10.	9.4	28
29	Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties. Journal of Colloid and Interface Science, 2018, 516, 110-120.	9.4	42
30	Bi2WO6/ZnFe2O4 heterostructures nanofibers: Enhanced visible-light photocatalytic activity and magnetically separable property. Materials Research Bulletin, 2018, 104, 124-133.	5.2	34
31	Magnetically separable Bi2MoO6/ZnFe2O4 heterostructure nanofibers: Controllable synthesis and enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2018, 747, 916-925.	5.5	50
32	Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: Controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. Journal of Hazardous Materials, 2018, 344, 113-122.	12.4	116
33	Electrospun CuAl ₂ O ₄ hollow nanofibers as visible light photocatalyst with enhanced activity and excellent stability under acid and alkali conditions. CrystEngComm, 2018, 20, 312-322.	2.6	18
34	Enhanced Full-Spectrum-Response Photocatalysis and Reusability of MoSe ₂ via Hierarchical N-Doped Carbon Nanofibers as Heterostructural Supports. ACS Sustainable Chemistry and Engineering, 2018, 6, 14314-14322.	6.7	16
35	Immobilization of ultrafine Ag nanoparticles on well-designed hierarchically porous silica for high-performance catalysis. Journal of Colloid and Interface Science, 2018, 530, 345-352.	9.4	19
36	Graphitic carbon nitride/BiOI loaded on electrospun silica nanofibers with enhanced photocatalytic activity. Applied Surface Science, 2018, 455, 952-962.	6.1	46

#	Article	IF	CITATIONS
37	Bi2MoO6/BiFeO3 heterojunction nanofibers: Enhanced photocatalytic activity, charge separation mechanism and magnetic separability. Journal of Colloid and Interface Science, 2018, 529, 404-414.	9.4	99
38	Assembling n-Bi ₂ MoO ₆ Nanosheets on Electrospun p-CuAl ₂ O ₄ Hollow Nanofibers: Enhanced Photocatalytic Activity Based on Highly Efficient Charge Separation and Transfer. ACS Sustainable Chemistry and Engineering, 2018, 6, 10714-10723.	6.7	59
39	Octahedral-Like CuO/In ₂ O ₃ Mesocages with Double-Shell Architectures: Rational Preparation and Application in Hydrogen Sulfide Detection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44632-44640.	8.0	46
40	Fabrication of g-C3N4/SiO2-Au composite nanofibers with enhanced visible photocatalytic activity. Ceramics International, 2017, 43, 15699-15707.	4.8	34
41	Heterojunctions of p-BiOI Nanosheets/n-TiO2 Nanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity. Materials, 2016, 9, 90.	2.9	35
42	Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. Journal of Power Sources, 2016, 329, 516-524.	7.8	44
43	Room temperature immobilized BiOI nanosheets on flexible electrospun polyacrylonitrile nanofibers with high visible-light photocatalytic activity. Journal of Sol-Gel Science and Technology, 2016, 80, 783-792.	2.4	12
44	3D MoS 2 nanosheet/TiO 2 nanofiber heterostructures with enhanced photocatalytic activity under UV irradiation. Journal of Alloys and Compounds, 2016, 686, 137-144.	5.5	69
45	Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. Journal of Materials Chemistry A, 2016, 4, 4180-4187.	10.3	203
46	Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability. Journal of Materials Chemistry A, 2016, 4, 5623-5631.	10.3	89
47	Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. Energy, 2016, 95, 233-241.	8.8	122
48	Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis. Journal of Materials Chemistry A, 2015, 3, 3281-3284.	10.3	113
49	Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers. Electrochimica Acta, 2015, 176, 293-300.	5.2	46
50	Hierarchical heterostructures of p-type BiOCl nanosheets on electrospun n-type TiO2 nanofibers with enhanced photocatalytic activity. Catalysis Communications, 2015, 67, 6-10.	3.3	70
51	Bismuth oxychloride/carbon nanofiber heterostructures for the degradation of 4-nitrophenol. CrystEngComm, 2015, 17, 7276-7282.	2.6	20
52	In2S3/carbon nanofibers/Au ternary synergetic system: Hierarchical assembly and enhanced visible-light photocatalytic activity. Journal of Hazardous Materials, 2015, 283, 599-607.	12.4	43
53	Controllable synthesis and enhanced visible photocatalytic degradation performances of Bi2WO6–carbon nanofibers heteroarchitectures. Journal of Sol-Gel Science and Technology, 2014, 70, 149-158.	2.4	12
54	<i>p</i> -MoO ₃ Nanostructures/ <i>n</i> -TiO ₂ Nanofiber Heterojunctions: Controlled Fabrication and Enhanced Photocatalytic Properties. ACS Applied Materials & Description of the Interfaces, 2014, 6, 9004-9012.	8.0	148

#	Article	IF	Citations
55	CuO/Cu ₂ O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity. RSC Advances, 2014, 4, 31056.	3.6	79
56	One-dimensional heterostructures of beta-nickel hydroxide nanoplates/electrospun carbon nanofibers: Controlled fabrication and high capacitive property. International Journal of Hydrogen Energy, 2014, 39, 16162-16170.	7.1	14
57	Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity. Ceramics International, 2013, 39, 3511-3518.	4.8	83
58	BiOCl nanosheets immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic activity and reusable property. Applied Surface Science, 2013, 285, 509-516.	6.1	70
59	One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. Journal of Hazardous Materials, 2013, 260, 892-900.	12.4	103
60	TiO2 nanoparticles immobilized on polyacrylonitrile nanofibers mats: a flexible and recyclable photocatalyst for phenol degradation. RSC Advances, 2013, 3, 7503.	3.6	44
61	In ₂ O ₃ nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity. Journal of Materials Chemistry, 2012, 22, 1786-1793.	6.7	72
62	Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. Journal of Materials Chemistry, 2012, 22, 577-584.	6.7	196
63	Bi2MoO6 microtubes: Controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2012, 225-226, 155-163.	12.4	130
64	Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silicananotubes for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry, 2012, 22, 1387-1395.	6.7	251
65	In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity. Journal of Hazardous Materials, 2012, 237-238, 331-338.	12.4	113
66	One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm, 2012, 14, 605-612.	2.6	228
67	Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm, 2012, 14, 3989.	2.6	225
68	In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale, 2011, 3, 3357.	5.6	566
69	Solvothermal synthesis and electrochemical properties of 3D flower-like iron phthalocyanine hierarchical nanostructure. Nanoscale, 2011, 3, 5126.	5.6	30
70	Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity. Journal of Materials Chemistry, 2011, 21, 6922.	6.7	113
71	Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. Journal of Materials Chemistry, 2011, 21, 17746.	6.7	143
72	High Photocatalytic Activity of ZnOâ^'Carbon Nanofiber Heteroarchitectures. ACS Applied Materials & Lamp; Interfaces, 2011, 3, 590-596.	8.0	415

#	Article	IF	CITATION
73	Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale, 2011, 3, 5034.	5.6	299
74	Dandelion-like Fe3O4@CuTNPc hierarchical nanostructures as a magnetically separable visible-light photocatalyst. Journal of Materials Chemistry, 2011, 21, 12083.	6.7	54
75	Controllable fabrication of cadmium phthalocyanine nanostructures immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic properties under visible light. Catalysis Communications, 2011, 12, 880-885.	3.3	42
76	A Facile in Situ Hydrothermal Method to SrTiO ₃ /TiO ₂ Nanofiber Heterostructures with High Photocatalytic Activity. Langmuir, 2011, 27, 2946-2952.	3.5	269
77	Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior. Journal of Colloid and Interface Science, 2011, 356, 706-712.	9.4	88
78	Three-dimensional hierarchical CeO2 nanowalls/TiO2 nanofibers heterostructure and its high photocatalytic performance. Journal of Sol-Gel Science and Technology, 2010, 55, 105-110.	2.4	28
79	Electrospun Nanofibers of <i>p</i> -Type NiO/ <i>n</i> -Type ZnO Heterojunctions with Enhanced Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2915-2923.	8.0	574
80	Electrospun Nanofibers of ZnOâ^'SnO ₂ Heterojunction with High Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 7920-7925.	3.1	345
81	Polyacrylonitrile and Carbon Nanofibers with Controllable Nanoporous Structures by Electrospinning. Macromolecular Materials and Engineering, 2009, 294, 673-678.	3.6	119