Sarah G Pati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1518853/publications.pdf

Version: 2024-02-01

	840776	996975
501	11	15
citations	h-index	g-index
1.5	1.5	477
15	15	477
docs citations	times ranked	citing authors
	citations 15	501 11 citations h-index 15 15

#	Article	IF	CITATIONS
1	Substrate-Specific Coupling of O ₂ Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases. ACS Catalysis, 2022, 12, 6444-6456.	11.2	10
2	Managing argon interference during measurements of $180/160$ ratios in O2 by continuous-flow isotope ratio mass spectrometry. Analytical and Bioanalytical Chemistry, 2022, 414, 6177-6186.	3.7	3
3	Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environmental Science and Technology Letters, 2020, 7, 622-631.	8.7	236
4	Comprehensive screening of quaternary ammonium surfactants and ionic liquids in wastewater effluents and lake sediments. Environmental Sciences: Processes and Impacts, 2020, 22, 430-441.	3.5	48
5	Reaction rates and product formation during advanced oxidation of ionic liquid cations by UV/peroxide, UV/persulfate, and UV/chlorine. Environmental Science: Water Research and Technology, 2018, 4, 1310-1320.	2.4	13
6	Photochemical Transformation of Four Ionic Liquid Cation Structures in Aqueous Solution. Environmental Science & Environmental	10.0	18
7	Characterization of Substrate, Cosubstrate, and Product Isotope Effects Associated With Enzymatic Oxygenations of Organic Compounds Based on Compound-Specific Isotope Analysis. Methods in Enzymology, 2017, 596, 291-329.	1.0	9
8	Measurement of oxygen isotope ratios ($<$ sup $>$ 18 $<$ /sup $>$ 0/ $<$ sup $>$ 16 $<$ /sup $>$ 0) of aqueous O $<$ sub $>$ 2 $<$ /sub $>$ in small samples by gas chromatography/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 684-690.	1.5	11
9	Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants. Environmental Science & Environmental Science	10.0	27
10	Exploring Trends of C and N Isotope Fractionation to Trace Transformation Reactions of Diclofenac in Natural and Engineered Systems. Environmental Science & Environmental Science & 10933-10942.	10.0	17
11	Enzyme Kinetics of Different Types of Flavin-Dependent Monooxygenases Determine the Observable Contaminant Stable Isotope Fractionation. Environmental Science and Technology Letters, 2015, 2, 329-334.	8.7	16
12	Isotope Effects as New Proxies for Organic Pollutant Transformation. Chimia, 2014, 68, 788.	0.6	12
13	Isotope Effects of Enzymatic Dioxygenation of Nitrobenzene and 2-Nitrotoluene by Nitrobenzene Dioxygenase. Environmental Science & Environmental Scien	10.0	24
14	Carbon and Nitrogen Isotope Effects Associated with the Dioxygenation of Aniline and Diphenylamine. Environmental Science & En	10.0	28
15	Carbon, Hydrogen, and Nitrogen Isotope Fractionation Associated with Oxidative Transformation of Substituted Aromatic <i>N</i> -Alkyl Amines. Environmental Science & Dechnology, 2012, 46, 7189-7198.	10.0	29