
Hiromu Nakagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1516800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mars system revealed by the Martian Moons eXploration mission. Earth, Planets and Space, 2022, 74, .	2.5	11
2	Modeling of Diffuse Auroral Emission at Mars: Contribution of MeV Protons. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	10
3	Variations in Vertical CO/CO ₂ Profiles in the Martian Mesosphere and Lower Thermosphere Measured by the ExoMars TGO/NOMAD: Implications of Variations in Eddy Diffusion Coefficient. Geophysical Research Letters, 2022, 49, .	4.0	7
4	Stability of Atmospheric Redox States of Early Mars Inferred from Time Response of the Regulation of H and O Losses. Astrophysical Journal, 2021, 912, 135.	4.5	6
5	Intense Zonal Wind in the Martian Mesosphere During the 2018 Planetâ€Encircling Dust Event Observed by Groundâ€Based Infrared Heterodyne Spectroscopy. Geophysical Research Letters, 2021, 48, e2021GL092413.	4.0	4
6	Determination of the Venus eddy diffusion profile from CO and CO2 profiles using SOIR/Venus Express observations. Icarus, 2021, 361, 114388.	2.5	6
7	Mars' atmospheric neon suggests volatile-rich primitive mantle. Icarus, 2021, 370, 114685.	2.5	7
8	Seasonal and Dustâ€Related Variations in the Dayside Thermospheric and Ionospheric Compositions of Mars Observed by MAVEN/NGIMS. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006926.	3.6	8
9	MIRS: an imaging spectrometer for the MMX mission. Earth, Planets and Space, 2021, 73, .	2.5	13
10	A coupled atmosphere–hydrosphere global climate model of early Mars: A â€~cool and wet' scenario for the formation of water channels. Icarus, 2020, 338, 113567.	2.5	24
11	Vertical Propagation of Wave Perturbations in the Middle Atmosphere on Mars by MAVEN/IUVS. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006481.	3.6	18
12	Seasonal and Latitudinal Variations of Dayside N ₂ /CO ₂ Ratio in the Martian Thermosphere Derived From MAVEN IUVS Observations. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006378.	3.6	8
13	A Warm Layer in the Nightside Mesosphere of Mars. Geophysical Research Letters, 2020, 47, e2019GL085646.	4.0	9
14	Evaluation of a method to retrieve temperature and wind velocity profiles of the Venusian nightside mesosphere from mid-infrared CO2 absorption line observed by heterodyne spectroscopy. Earth, Planets and Space, 2020, 72, .	2.5	1
15	Design for stray-light reduction to a Martian ionospheric imager. Applied Optics, 2020, 59, 9937.	1.8	0
16	Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express. Icarus, 2018, 302, 175-190.	2.5	34
17	Stringent upper limit of CH ₄ on Mars based on SOFIA/EXES observations. Astronomy and Astrophysics, 2018, 610, A78.	5.1	10
18	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216

HIROMU NAKAGAWA

#	Article	IF	CITATIONS
19	Development of PLANETS telescope and visible-infrared spectrometer for monitoring of planetary and exoplanetary atmospheres. , 2018, , .		0
20	High-contrast apodization baffle for instruments onboard solar system exploration missions. , 2018, , .		1
21	MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 2310-2335.	2.4	88
22	Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. Journal of Geophysical Research: Space Physics, 2017, 122, 2374-2397.	2.4	66
23	Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling. Geophysical Research Letters, 2016, 43, 3095-3104.	4.0	34
24	IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. HaleakalÄ , Hawaii. Planetary and Space Science, 2016, 126, 34-48.	1.7	18
25	Seasonal variation of the HDO/H2O ratio in the atmosphere of Mars at the middle of northern spring and beginning of northern summer. Icarus, 2015, 260, 7-22.	2.5	47
26	Search for hydrogen peroxide in the Martian atmosphere by the Planetary Fourier Spectrometer onboard Mars Express. Icarus, 2015, 245, 177-183.	2.5	7
27	UV optical measurements of the Nozomi spacecraft interpreted with a two-component LIC-flow model(Corrigendum). Astronomy and Astrophysics, 2014, 566, C1.	5.1	1
28	Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation. Proceedings of SPIE, 2014, , .	0.8	7
29	Venus' upper atmospheric dynamical structure from ground-based observations shortly before and after Venus' inferior conjunction 2009. Icarus, 2013, 225, 828-839.	2.5	12
30	Comparison of general circulation model atmospheric wave simulations with wind observations of venusian mesosphere. Icarus, 2013, 225, 840-849.	2.5	11
31	Synthetic Aperture Radar Processing of Kaguya Lunar Radar Sounder Data for Lunar Subsurface Imaging. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2161-2174.	6.3	23
32	The Lunar Radar Sounder (LRS) Onboard theÂKAGUYA (SELENE) Spacecraft. Space Science Reviews, 2010, 154, 145-192.	8.1	50
33	The Lunar Radar Sounder (LRS) Onboard the Kaguya (SELENE) Spacecraft. , 2010, , 145-192.		2
34	Lunar Radar Sounder Observations of Subsurface Layers Under the Nearside Maria of the Moon. Science, 2009, 323, 909-912.	12.6	166
35	Search of SO2 in the Martian atmosphere by ground-based submillimeter observation. Planetary and Space Science, 2009, 57, 2123-2127.	1.7	12
36	Latitudinal dependence of the solar wind density derived from remote sensing measurements using interplanetary Lyman α emission from 1999 to 2002. Earth, Planets and Space, 2009, 61, 373-382.	2.5	1

HIROMU NAKAGAWA

#	Article	IF	CITATIONS
37	Distribution of the subsurface reflectors of the western nearside maria observed from Kaguya with Lunar Radar Sounder. Geophysical Research Letters, 2009, 36, .	4.0	31
38	UV optical measurements of the Nozomi spacecraft interpreted with a two-component LIC-flow model. Astronomy and Astrophysics, 2008, 491, 29-41.	5.1	9
39	Solar cycle dependence of interplanetary Lyman α emission and solar wind anisotropies derived from NOZOMI/UVS and SOHO/SWAN observations. Journal of Geophysical Research, 2003, 108, .	3.3	12
40	Optical and IR observations of planetary and exoplanetary atmospheres. SPIE Newsroom, 0, , .	0.1	1