Leigh Sutherland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/151541/publications.pdf

Version: 2024-02-01

394421 526287 33 1,052 19 27 citations g-index h-index papers 34 34 34 791 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aluminium honeycomb sandwich as a design alternative for lightweight marine structures. Ships and Offshore Structures, 2022, 17, 2355-2366.	1.9	10
2	<i>Quasi</i> -static indentation and impact in glass-fibre reinforced polymer sandwich panels for civil and ocean engineering applications. Journal of Sandwich Structures and Materials, 2021, 23, 194-221.	3.5	13
3	Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg. Composite Structures, 2021, 256, 113128.	5.8	41
4	Lightweight Aluminium Sandwich Structures for Marine Vehicles. Progress in Marine Science and Technology, 2020, , .	0.1	2
5	Statistical analyses of the effects of bonding parameters and fabrication robustness on the strength of adhesive T-joints. Composites Part B: Engineering, 2019, 175, 107063.	12.0	4
6	A review of impact testing on marine composite materials: Part I – Marine impacts on marine composites. Composite Structures, 2018, 188, 197-208.	5.8	86
7	A review of impact testing on marine composite materials: Part II – Impact event and material parameters. Composite Structures, 2018, 188, 503-511.	5.8	31
8	A review of impact testing on marine composite materials: Part III - Damage tolerance and durability. Composite Structures, 2018, 188, 512-518.	5.8	34
9	A review of impact testing on marine composite materials: Part IV – Scaling, strain rate and marine-type laminates. Composite Structures, 2018, 200, 929-938.	5.8	14
10	Impact response of pedestrian bridge multicellular pultruded GFRP deck panels. Composite Structures, 2017, 171, 473-485.	5.8	15
11	Statistical experimental design techniques to investigate the strength of adhesively bonded T-joints. Composite Structures, 2017, 159, 445-454.	5.8	9
12	Quasi-static indentation response of pedestrian bridge multicellular pultruded GFRP deck panels. Construction and Building Materials, 2016, 118, 307-318.	7.2	13
13	Effect of vacuum bag pressure on the flexural properties of GFRP composite laminates. , 2016, , 429-434.		3
14	Investigating T-joint strength parameters using statistical experimental design and analysis techniques., 2016,, 569-574.		1
15	Numerical simulation of transversely impacted, clamped circular aluminium plates. Ships and Offshore Structures, 2012, 7, 31-45.	1.9	33
16	The use of quasi-static testing to obtain the low-velocity impact damage resistance of marine GRP laminates. Composites Part B: Engineering, 2012, 43, 1459-1467.	12.0	89
17	Considering disabled people in sailing yacht design. , 2012, , 53-61.		1
18	Numerical simulation of laterally impacted clamped circular steel plates., 2011,, 419-427.		0

#	Article	IF	Citations
19	Impact behaviour of GRP, aluminium and steel plates. , 2009, , 293-300.		3
20	Scaling of impact on low fibre-volume glass–polyester laminates. Composites Part A: Applied Science and Manufacturing, 2007, 38, 307-317.	7.6	23
21	Impact on single-skin marine composites. , 2006, , 535-542.		0
22	Impact behaviour of typical marine composite laminates. Composites Part B: Engineering, 2005, 37, 89-100.	12.0	48
23	Impact on low fibre-volume, glass/polyester rectangular plates. Composite Structures, 2005, 68, 13-22.	5.8	53
24	Contact indentation of marine composites. Composite Structures, 2005, 70, 287-294.	5.8	53
25	Impact characterisation of low fibre-volume glass reinforced polyester circular laminated plates. International Journal of Impact Engineering, 2005, 31, 1-23.	5.0	70
26	Effect of laminate thickness and of matrix resin on the impact of low fibre-volume, woven roving E-glass composites. Composites Science and Technology, 2004, 64, 1691-1700.	7.8	31
27	The effects of test parameters on the impact response of glass reinforced plastic using an experimental design approach. Composites Science and Technology, 2003, 63, 1-18.	7.8	63
28	Size and scale effects in composites: I. Literature review. Composites Science and Technology, 1999, 59, 209-220.	7.8	115
29	Size and scale effects in composites: II. Unidirectional laminates. Composites Science and Technology, 1999, 59, 221-233.	7.8	35
30	Size and scale effects in composites: III. Woven-roving laminates. Composites Science and Technology, 1999, 59, 235-251.	7.8	26
31	Impact tests on woven-roving E-glass/polyester laminates. Composites Science and Technology, 1999, 59, 1553-1567.	7.8	47
32	Effects of laminate thickness and reinforcement type on the impact behaviour of E-glass/polyester laminates. Composites Science and Technology, 1999, 59, 2243-2260.	7.8	34
33	Review of probabilistic models of the strength of composite materials. Reliability Engineering and System Safety, 1997, 56, 183-196.	8.9	52