Mineo Hashizume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1515181/publications.pdf

Version: 2024-02-01

687363 794594 36 441 13 19 citations h-index g-index papers 38 38 38 412 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Control of the molecular permeability of polysaccharide composite films utilizing a molecular imprinting approach. Polymer Journal, 2022, 54, 571-579.	2.7	7
2	Detection of Influenza Virus by Agglutination of Microparticles Immobilized a Mixed Glycan Receptor Produced from Cells. ACS Applied Bio Materials, 2022, 5, 2130-2134.	4.6	1
3	Catalytic Synthesis of Oxazolidinones from a Chitin-Derived Sugar Alcohol. Bulletin of the Chemical Society of Japan, 2022, 95, 1054-1059.	3.2	3
4	Preparation and physical properties of free-standing films made of polyion complexes of carboxymethylated hyaluronic acid and chitosan. Polymer, 2022, 253, 125033.	3.8	4
5	Preparation of Polymer-Immobilized Polyimide Films Using Hot Pressing and Titania Coatings. Langmuir, 2021, 37, 4403-4410.	3.5	7
6	Enhancement of the mechanical properties of polysaccharide composite films utilizing cellulose nanofibers. Polymer Journal, 2020, 52, 645-653.	2.7	13
7	Nanoarchitectonics With Hybrid Materials. , 2019, , 255-275.		O
8	Preparation of Cell-Paved and -Incorporated Polysaccharide Hollow Fibers Using a Microfluidic Device. ACS Biomaterials Science and Engineering, 2019, 5, 5688-5697.	5.2	11
9	Preparation of 3D porous hydroxyapatite cell scaffolds using polystyrene templates under biomimetic conditions. Journal of the Ceramic Society of Japan, 2018, 126, 956-958.	1.1	1
10	Cartilage Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Three-Dimensional Silica Nonwoven Fabrics. Applied Sciences (Switzerland), 2018, 8, 1398.	2.5	11
11	Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Electrospun Silica Nonwoven Fabrics. ACS Omega, 2018, 3, 10180-10187.	3.5	8
12	Preparation of Swellable and Highly Operable Composite Films Made of Polysaccharides and Supporting Substrates. Kobunshi Ronbunshu, 2018, 75, 195-202.	0.2	4
13	Selective fabrication of hollow and solid polysaccharide composite fibers using a microfluidic device by controlling polyion complex formation. Polymer Journal, 2018, 50, 1187-1198.	2.7	10
14	Utilization of Proteins and Peptides to Create Organic-Hydroxyapatite Hybrids. Protein and Peptide Letters, 2018, 25, 25-33.	0.9	7
15	Noninvasive Fingerprinting-Based Tracking of Replicative Cellular Senescence Using a Colorimetric Polyion Complex Array. Analytical Chemistry, 2018, 90, 6348-6352.	6.5	12
16	Kinetic Analysis of Molecular Permeabilities of Freeâ€Standing Polysaccharide Composite Films. Macromolecular Chemistry and Physics, 2017, 218, 1600391.	2.2	8
17	Media-Responsive Swelling and Material Release Properties of Polysaccharide Composite Films. , 2017, , 269-279.		О
18	Control of cell adhesion and proliferation utilizing polysaccharide composite film scaffolds. Colloids and Surfaces B: Biointerfaces, 2017, 160, 228-237.	5.0	23

#	Article	IF	CITATIONS
19	Effect of protein adsorption layers and solution treatments on hydroxyapatite deposition on polystyrene plate surfaces in simulated body fluids. Journal of Materials Science: Materials in Medicine, 2017, 28, 193.	3.6	8
20	Hot-Press-Assisted Adhesions between Polyimide Films and Titanium Plates Utilizing Coating Layers of Silane Coupling Agents. Langmuir, 2016, 32, 12344-12351.	3.5	18
21	Surface functionalization of polymer substrates with hydroxyapatite using polymer-binding peptides. Journal of Materials Chemistry B, 2016, 4, 3651-3659.	5.8	15
22	Surface functionalization of tissue culture polystyrene plates with hydroxyapatite under body fluid conditions and its effect on differentiation behaviors of mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 147, 351-359.	5.0	20
23	Drug loading and release behaviors of freestanding polysaccharide composite films. Polymer Journal, 2016, 48, 545-550.	2.7	20
24	Application of Polysaccharides as Structural Materials. Trends in Glycoscience and Glycotechnology, 2015, 27, 67-79.	0.1	12
25	Free-standing polysaccharide composite films: Improved preparation and physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 18-24.	4.7	18
26	Control of biomimetic hydroxyapatite deposition on polymer substrates using different protein adsorption abilities. Colloids and Surfaces B: Biointerfaces, 2015, 130, 77-83.	5.0	16
27	Preparation of Chondroitin Sulfate/Chitosan Composite Fibers by Spinning from Aqueous Solution Interfaces. Kobunshi Ronbunshu, 2014, 71, 11-16.	0.2	12
28	Biomimetic calcium phosphate coating on polyimide films by utilizing surface-selective hydrolysis treatments. Journal of the Ceramic Society of Japan, 2013, 121, 816-818.	1.1	10
29	Calcium Phosphate Mineralization Induced by Synthetic Peptides Having Different Distributions in Simulated Body Fluids. Chemistry Letters, 2012, 41, 588-590.	1.3	5
30	Sol–gel titania coating on unmodified and surface-modified polyimide films. Journal of Sol-Gel Science and Technology, 2012, 62, 234-239.	2.4	14
31	Preparation of free-standing films of natural polysaccharides using hot press technique and their surface functionalization with biomimetic apatite. Colloids and Surfaces B: Biointerfaces, 2011, 88, 534-538.	5.0	28
32	Effect of preparative conditions on crystallinity of apatite particles obtained from simulated body fluids. Colloids and Surfaces B: Biointerfaces, 2011, 84, 545-549.	5.0	16
33	Facile Surface Functionalization of Polystyrene Substrates with Biomimetic Apatite by Utilizing Serum Proteins. Chemistry Letters, 2010, 39, 220-222.	1.3	15
34	Apatite Deposition on Serum Protein-Adsorbed Polystyrene Surfaces under Body Fluid Conditions. Transactions of the Materials Research Society of Japan, 2010, 35, 115-118.	0.2	5
35	Preparations of self-supporting nanofilms of metal oxides by casting processes. Soft Matter, 2006, 2, 135-140.	2.7	26
36	Preparation of Self-Supporting Ultrathin Films of Titania by Spin Coating. Langmuir, 2003, 19, 10172-10178.	3.5	53

3