
Arshad Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1513597/publications.pdf Version: 2024-02-01

Δρςμλη Κμλη

#	Article	IF	CITATIONS
1	Developing pressure sensors from impregnated textile sandwiched in inkjet-printed electrodes. Journal of Materials Science: Materials in Electronics, 2022, 33, 541-553.	2.2	5
2	Waste to energy: Facile, low-cost and environment-friendly triboelectric nanogenerators using recycled plastic and electronic wastes for self-powered portable electronics. Energy Reports, 2022, 8, 1687-1695.	5.1	42
3	Recycled Plastic Waste-based Triboelectric Nanogenerator Reinforcing Circular Economy. , 2022, , .		1
4	Printing Sensors on Biocompatible Substrates for Selective Detection of Glucose. IEEE Sensors Journal, 2021, 21, 4167-4175.	4.7	11
5	A low-cost printed organic thermoelectric generator for low-temperature energy harvesting. Renewable Energy, 2021, 167, 853-860.	8.9	23
6	Developing Conductive Fabric Threads for Human Respiratory Rate Monitoring. IEEE Sensors Journal, 2021, 21, 4350-4356.	4.7	20
7	A Weldless Approach for Thermocouple Fabrication Through Direct Ink Writing Technique. IEEE Sensors Journal, 2021, 21, 1279-1286.	4.7	4
8	Fabrication of circuits by multi-nozzle electrohydrodynamic inkjet printing for soft wearable electronics. Journal of Materials Research, 2021, 36, 3568-3578.	2.6	20
9	Rapid Fabrication of Soft Strain Sensors by Multi-Nozzle Electrohydrodynamic Inkjet Printing for Wearable Electronics. , 2021, , .		5
10	Sensors on Nonconventional Substrates Developed through Printing Technologies. , 2021, , .		0
11	Developing a Printed Respiration Rate Sensor for E-textile Applications. , 2021, , .		0
12	A low-cost printed humidity sensor on cellulose substrate by EHD printing. Journal of Materials Research, 2021, 36, 3667-3678.	2.6	12
13	Memristor Fabrication Through Printing Technologies: A Review. IEEE Access, 2021, 9, 95970-95985.	4.2	10
14	Computational design and optimization of electro-physiological sensors. Nature Communications, 2021, 12, 6351.	12.8	14
15	Substrate Treatment Evaluation and Their Impact on Printing Results for Wearable Electronics. Frontiers in Electronics, 2021, 2, .	3.2	1
16	Novel Embedded Metal-mesh Transparent Electrodes. Springer Theses, 2020, , .	0.1	2
17	PhysioSkin: Rapid Fabrication of Skin-Conformal Physiological Interfaces. , 2020, , .		36

18 Conformal Wearable Devices for Expressive On-Skin Interaction. , 2020, , .

2

Arshad Khan

#	Article	IF	CITATIONS
19	Templateâ€Electrodeposited and Imprintâ€Transferred Microscale Metalâ€Mesh Transparent Electrodes for Flexible and Stretchable Electronics. Advanced Engineering Materials, 2019, 21, 1900723.	3.5	31
20	Soft Inkjet Circuits. , 2019, , .		40
21	Scalable Fabrication of Metallic Nanofiber Network via Templated Electrodeposition for Flexible Electronics. Advanced Functional Materials, 2019, 29, 1903123.	14.9	21
22	Highly-facile template-based selective electroless metallization of micro- and nanopatterns for plastic electronics and plasmonics. Journal of Materials Chemistry C, 2019, 7, 4363-4373.	5.5	14
23	49.2: Invited Paper: Solutionâ€processed Metallic Micro―and Nanostructures for Transparent Electrodes in Flexible Display and Sensing Applications. Digest of Technical Papers SID International Symposium, 2019, 50, 554-555.	0.3	0
24	Highly transparent and flexible polyaniline mesh sensor for chemiresistive sensing of ammonia gas. RSC Advances, 2018, 8, 5312-5320.	3.6	31
25	Irreversibility analysis in unsteady flow over a vertical plate with arbitrary wall shear stress and ramped wall temperature. Results in Physics, 2018, 8, 1283-1290.	4.1	15
26	Stretchable Transparent Electrodes with Solution-Processed Regular Metal Mesh for an Electroluminescent Light-Emitting Film. ACS Applied Materials & Interfaces, 2018, 10, 21009-21017.	8.0	53
27	Selective Electroless Metallization of Micro- and Nanopatterns via Poly(dopamine) Modification and Palladium Nanoparticle Catalysis for Flexible and Stretchable Electronic Applications. ACS Applied Materials & Interfaces, 2018, 10, 28754-28763.	8.0	48
28	Solution-Processed Transparent Nickel-Mesh Counter Electrode with in-Situ Electrodeposited Platinum Nanoparticles for Full-Plastic Bifacial Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 8083-8091.	8.0	45
29	Scalable Solution-processed Fabrication Strategy for High-performance, Flexible, Transparent Electrodes with Embedded Metal Mesh. Journal of Visualized Experiments, 2017, , .	0.3	3
30	MHD Flow of Micropolar Fluid over an Oscillating Vertical Plate Embedded in Porous Media with Constant Temperature and Concentration. Mathematical Problems in Engineering, 2017, 2017, 1-20.	1.1	24
31	Solution-processed metallic micro- and nanostructures for transparent electrodes and plasmonic sensors. , 2017, , .		0
32	Highâ€Performance Flexible Transparent Electrode with an Embedded Metal Mesh Fabricated by Costâ€Effective Solution Process. Small, 2016, 12, 3021-3030.	10.0	178
33	Conjugate transfer of heat and mass in unsteady flow of a micropolar fluid with wall couple stress. AIP Advances, 2015, 5, .	1.3	9
34	Influence of Slip Condition on Unsteady Free Convection Flow of Viscous Fluid with Ramped Wall Temperature. Abstract and Applied Analysis, 2015, 2015, 1-7.	0.7	16
35	Exact Solutions of Heat and Mass Transfer with MHD Flow in a Porous Medium under Time Dependent Shear Stress and Temperature. Abstract and Applied Analysis, 2015, 2015, 1-16.	0.7	2
36	Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Engineering Science and Technology, an International Journal, 2015, 18, 309-317.	3.2	135

Arshad Khan

#	Article	IF	CITATIONS
37	Effects of Wall Shear Stress on MHD Conjugate Flow over an Inclined Plate in a Porous Medium with Ramped Wall Temperature. Mathematical Problems in Engineering, 2014, 2014, 1-15.	1.1	22
38	Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	13
39	Effects of Wall Shear Stress on Unsteady MHD Conjugate Flow in a Porous Medium with Ramped Wall Temperature. PLoS ONE, 2014, 9, e90280.	2.5	21
40	Development of Electrostatic Inkjet Head by Integrating Metallic and Silica Capillaries for Stable Meniscus. Materials and Manufacturing Processes, 2012, 27, 1239-1244.	4.7	6
41	Direct Fabrication of Copper Nanoparticle Patterns through Electrohydrodynamic Printing in Cone-Jet Mode. Materials and Manufacturing Processes, 2012, 27, 1295-1299.	4.7	12
42	Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing. Journal of Micromechanics and Microengineering, 2012, 22, 065012.	2.6	40
43	Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process. Journal of Materials Processing Technology, 2012, 212, 700-706.	6.3	89
44	Drop-on-Demand Direct Printing of Colloidal Copper Nanoparticles by Electrohydrodynamic Atomization. Materials and Manufacturing Processes, 2011, 26, 1196-1201.	4.7	38
45	Multi-nozzle electrohydrodynamic inkjet printing of silver colloidal solution for the fabrication of electrically functional microstructures. Applied Physics A: Materials Science and Processing, 2011, 104, 1113-1120.	2.3	72
46	Cross-talk effect in electrostatic based capillary array nozzles. Journal of Mechanical Science and Technology, 2011, 25, 3053-3062.	1.5	12
47	Study of drop-on-demand printing through multi-step pulse voltage. International Journal of Precision Engineering and Manufacturing, 2011, 12, 663-669.	2.2	36
48	Direct patterning and electrospray deposition through EHD for fabrication of printed thin film transistors. Current Applied Physics, 2011, 11, S271-S279.	2.4	71
49	Effects of nozzles array configuration on cross-talk in multi-nozzle electrohydrodynamic inkjet printing head. Journal of Electrostatics, 2011, 69, 380-387.	1.9	29
50	Electrode configuration effects on the electrification and voltage variation in an electrostatic inkjet printing head. Journal of Micromechanics and Microengineering, 2010, 20, 075033.	2.6	17
51	Effects of process parameters on cross-talk in triangular array multi-nozzle EHD printing head. , 2010, , .		0
52	Vacuum-Free Fabrication of Transparent Electrodes for Soft Electronics. , 0, , .		0